Change search
ReferencesLink to record
Permanent link

Direct link
Low-complexity algorithms in digital receivers
Luleå tekniska universitet.
1996 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis addresses low-complexity algorithms in digital receivers. This includes algorithms for estimation, detection, and source coding. Low-complexity algorithms for estimation and detection, in this thesis concerns the approximation of optimal algorithms, so that a low complexity is obtained while most of the original performance is maintained. Two different problems are studied: Channel estimation in orthogonal frequency-division multiplexing (OFDM) systems and sequence detection in systems with inter-symbol interference (ISI). The work on channel estimation is focused on what can be viewed as transform-based estimators, where the estimation is transformed to a domain that allows the statistical properties of the channel to be used efficiently for complexity reduction. Estimators based both on the discrete Fourier transform (DFT) and on low-rank approximations are addressed. It is shown that these types of estimators, with proper design considerations, provide good low-complexity estimators, even though the DFT-based estimators have a tendency to suffer from approximation errors at high signal-to-noise ratios. The work on sequence detection in systems with ISI is a comparative study of designs in a class usually referred to as combined linear-Viterbi equalizers (CLVEs). The idea behind CLVEs is to shorten the impulse response of the channel by a linear prefiltering, before the Viterbi detector is applied. The comparison includes three previously known designs and a minimax design. A unified design-framework is also derived, which makes the comparison easier. The last two parts of the thesis are concerned with the design of robust variable-length codes and an analysis of the decoding speed for look-uptable based decoders for variable-length codes, respectively. By robust variable-length codes are meant fixed variable-length codes that have a low susceptibility to changes in the probability distribution of the source. Robustness measures are discussed in general and a measure called gradient robustness is introduced. It is shown that only a small loss in the degree of data compression can result in substantially increased robustness. As a side effect the proposed design methods also shorten the length of the longest code words, allowing efficient storage of code books. Finally, the design and the decoding speed of look-up table based decoders for variable-length codes are studied. These decoders are based on using the coded sequence for indexing a table, thereby providing an instantaneous decoding. Two types of decoders are studied. One allows a trade-off between decoding speed and memory requirement.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 1996. , 178 p.
Doctoral thesis / Luleå University of Technologyy… → 31 dec 1996, ISSN 0348-8373 ; 206
Research subject
Signal Processing
URN: urn:nbn:se:ltu:diva-18590Local ID: 9567c230-f59c-11db-ac79-000ea68e967bOAI: diva2:991599
Godkänd; 1996; 20070428 (ysko)Available from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(3546 kB)2 downloads
File information
File name FULLTEXT01.pdfFile size 3546 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search outside of DiVA

GoogleGoogle Scholar
Total: 2 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 48 hits
ReferencesLink to record
Permanent link

Direct link