Change search
ReferencesLink to record
Permanent link

Direct link
Smoothed Particle Hydrodynamic of Hydraulic Jumps in Spillways
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Fluid and Experimental Mechanics.
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis focus on the complex natural phenomena of hydraulic jumps using the numerical method Smoothed Particle Hydrodynamics (SPH). A hydraulic jump is highly turbulent and associated with turbulent energy dissipation, air entrainment, surface waves and spray and strong dissipative processes. It can be found not only in natural streams and in engineered open channels, but also in your kitchen sink at home. The dissipative features are utilized in hydropower spillways and stilling basins to reduce high velocity flows. Potentially, such flow can cause erosion and reduce the lifetime and increase maintenance costs of spillways and related structures which must be avoided. Usually, spillways are engaged to safely pass extreme flooding events and redirect the flow during maintenance shutdown of the production units, i.e. turbines and generators. It is hence vital to understand and be able to predict the involved processes in a hydraulic jump. The Lagrangian, meshless particle based numerical method SPH has been considered as the main computational method throughout this thesis. The ability of the SPH method to capture complex free-surfaces with large deformation and fragmentation, found in hydraulic jumps, makes it a strong modelling tool. However, the SPH method is less developed compared to the established Finite Volume- (FVM) and Finite Element (FEM) methods. Initially, focus was on reproducing the results of previous studies where the geometrical aspect of hydraulic jumps was the main consideration (Paper A). Several modelling parameters were re-evaluated using a dam-break test case in Paper B and later applied in Paper C. Paper C, focused not only on the geometrical aspect of the hydraulic jump but also on the internal flow field and its relation to the free-surface. Later in Paper D, a new strategy on how to perform SPH hydraulic jump simulations based on periodic open boundaries was developed. Finally, the method developed was applied in two separate studies. In Paper E, the SPH method was compared with experiments performed at Vattenfall Research & Development in ¨Alvkarleby, Sweden. The SPH model, comprised of a channel and a scaled spillway outlet chute, not only captured the jump position but also large scale flow features. The final Paper F, was a continuation of Paper C where the internal flow field and its dynamical relationship with the free surface was reinvestigated using the more sophisticated SPH model.

Place, publisher, year, edition, pages
Luleå tekniska universitet, 2015.
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Research subject
Fluid Mechanics
URN: urn:nbn:se:ltu:diva-18570Local ID: 938d7ffa-57c7-40da-b85b-8ef6a30ded3eISBN: 978-91-7583-483-2 (print)ISBN: 978-91-7583-484-9 (electronic)OAI: diva2:991579
Godkänd; 2015; 20151019 (patjon); Nedanstående person kommer att disputera för avläggande av teknologie doktorsexamen. Namn: Patrick Jonsson Ämne: Strömningslära/Fluid Mechanics Avhandling: Smoothed Particle Hydrodynamic of Hydraulic Jumps in Spillways Opponent: Professor Peter Stansby, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, England Ordförande: Professor Staffan Lundström, Avd för strömningslära och experimentell mekanik, Institutionen för teknikvetenskap och matematik, Luleå tekniska universitet, Luleå Tid: Torsdag 17 december, 2015 kl 09.00 Plats: E231, Luleå tekniska universitetAvailable from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(12857 kB)36 downloads
File information
File name FULLTEXT01.pdfFile size 12857 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Jonsson, Patrick
By organisation
Fluid and Experimental Mechanics

Search outside of DiVA

GoogleGoogle Scholar
Total: 36 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 154 hits
ReferencesLink to record
Permanent link

Direct link