Change search
ReferencesLink to record
Permanent link

Direct link
On Mobility Solutions in Heterogeneous Networking Environments
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Computer Science.
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Mobility support for users and devices, such as sensors, connecting to the Internet is a continuously growing trend. Different types of wireless networking technologies like WiFi, LTE, and ZigBee are available, creating a heterogeneous wireless networking environment. In general, the technology, ranging from network equipment to communications protocols, available today, tends to be designed with limited exibility when it comes to supporting heterogeneity. Proprietary technology and highly optimized mechanisms limit the potential use of networking infrastructure for multiple purposes. Supporting mobility for wireless devices between different networking technologies and administrative domains requires secure and scalable mobility management solutions. Current research in the field of mobility management and security in heterogeneous networking environment tends to handle mobility management performance, such as communications characteristics, and security related aspects as separate, and more or less mutually exclusive. The work presented in this thesis serves to challenge this trade-off and proposes solutions that seeks to brigde the gap between the two areas. This thesis proposes using an Authentication, Authorization and Accounting (AAA) system based on the RADIUS AAA protocol that enables a common AAA infrastructure to operate in a heterogeneous networking environment, and that enables a hierarchical interconnection structure between service providers. The proposed AAA architecture offers a highly scalable AAA infrastructure with access technology independent support for user and device authentication as well as mobility on a global scale. Further, to support handoffs between networks, a set of methods for facilitating improved handoff decisions for intra- and inter-operator mobility in heterogeneous networks are presented. These methods rely on metrics that include indicators on network load conditions to improve service stability and decrease application down time during handoff.Results show that the proposed AAA infrastructure can be built to scale in order to support a very large number of entities, more than 1000 user or device authentications per second, using industry standard hardware. Further, an AAA architecture compatible sensor authentication protocol is proposed, implemented, and validated that supports sensor mobility and reduces power consumption, on wireless sensor nodes, with 33% compared to state-of-the-art protocols by reducing CPU and communications overhead. Using the proposed mechanism for facilitating handos in wireless sensor networks, a reduction of 44% in packet loss is achived during a mobility session compared to a traditional solution.

Place, publisher, year, edition, pages
Luleå tekniska universitet, 2015. , 200 p.
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Research subject
Mobile and Pervasive Computing
URN: urn:nbn:se:ltu:diva-18414Local ID: 8827d380-1311-49ea-80a5-47406efe27ceISBN: 978-91-7583-384-2 (print)ISBN: 978-91-7583-385-9 (electronic)OAI: diva2:991423
Godkänd; 2015; 20150826 (dangra); Nedanstående person kommer att disputera för avläggande av teknologie doktorsexamen. Namn: Daniel Granlund Ämne: Mobila system/Mobile Systems Avhandling: On Mobility Solutions in Heterogeneous Networking Environments Opponent: Professor Lars Wolf, Department of Computer Science, Carl-Friedrich-Gauß-Faculty, Technische Universität Braunschweig, Braunschweig, Tyskland Ordförande: Professor Christer Åhlund, Avd för datavetenskap, Institutionen för system- och rymdteknik, Luleå tekniska universitet, Skellefteå Tid: Onsdag 30 september 2015 kl 10.00 Plats: Hörsal A, Skellefteå, Luleå tekniska universitetAvailable from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(9968 kB)47 downloads
File information
File name FULLTEXT01.pdfFile size 9968 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Granlund, Daniel
By organisation
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 47 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 67 hits
ReferencesLink to record
Permanent link

Direct link