Change search
ReferencesLink to record
Permanent link

Direct link
Energy and Resource Efficiency in Convective Drying Systems in the Process Industry
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
2014 (English)Doctoral thesis, comprehensive summary (Other academic)Alternative title
Energi- och resurseffektivitet i konvektiva torksystem inom processindustrin (Swedish)
Abstract [en]

Growing concern about environmental problems has increased the public’s interest in energy usage. The subsidies for biomass, together with the rising energy prices have madebiomass a desirable product on the energy market. This has led to higher biomass prices and an increased interest in improving the resource and energy efficiency associated withbiomass production. Biofuel is an interesting substitute for fossil fuels to decrease the greenhouse gas emissions. One challenge with biofuels is to find sufficient amounts of biomass since the foresting is already close to its maximum sustainable capacity. Sawmills are important suppliers to the biomass market, since the sawmill industries produce a significant part of the available biomass. This Doctoral thesis focuses on strategies to decrease biomass usage in order to increase the biomass availability at the market. This is done through mapping and system analysis of energy and material streams for process industries using convective drying techniques. The energy analysis is mainly done through thermodynamics and psychrometry. Available state-of-the-art technologies on the market are studied to determine their potential for decreasing the total energy usage in sawmills. Integration possibilities between biomass consumers are also investigated through process integration with mathematical programming and pinch analysis. Energy efficiency of berry drying in a juice plant is also studied. The main conclusions are as follows. The heat demand of drying lumber in Swedish sawmills is about 4.9 TWh/year. Using available state-of-the-art technologies (heat pumps,heat exchangers and open absorption system) it is possible to reduce the energy usagesubstantially. If the recovered heat is used for heat sinks inside, or close to, the sawmill, the energy efficiency can be improved significantly. Using mechanical heat pumps nationally could save 4.9 TWh/year ofheatandgenerate0.62 TWh/year of surplus heat, at the cost of 1TWh/year of electricity. Using open absorption systems nationally, could save 3.4 TWh/year of heat, at the cost of only 0.05 TWh/year of electricity. Saving this heat means that an even larger amount of biomass will be saved, since there are heat losses during the combustion and distribution. Another way of saving energy is to displacethe starting time between batch kilns, and recycle evacuation air between the kilns. Nationally, this could save 0.44 TWh/year of heat. Industrial site integration between sawmills and the main biomass users (pelleting plants an d CHP plants) can decrease the use of biomass in the industrial site with 43% wt compared to a standalone site with a comparable production. Nationally, this could save up to 7.1 TWh/year of biomass. Despite the significant savings in terms of resources, it is not profitable due to the currentprice ratio between district heating and biomass. Finally, drying and separationof berry press cake in a juice plant is found to be possible using only energy from the exhaust gases of the steam boiler, if the drying air is sufficientlyrecycled. Instead of composting the press cake, the dried and separated skins and seeds could then be sold.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2014. , 54 p.
Series
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Research subject
Energy Engineering
Identifiers
URN: urn:nbn:se:ltu:diva-18230Local ID: 783f7a36-5d01-42c6-8918-13cdf2b973c9ISBN: 978-91-7439-872-4ISBN: 978-91-7439-873-1 (PDF)OAI: oai:DiVA.org:ltu-18230DiVA: diva2:991237
Note
Godkänd; 2014; 20140218 (janand); Nedanstående person kommer att disputera för avläggande av teknologie doktorsexamen. Namn: Jan-Olof Andersson Ämne: Energiteknik/Energy Engineering Avhandling: Energy and Resource Efficiency in Convective Drying Systems in the Process Industry Opponent: Associate professor Zhifa Sun, Dept of Physics, Otago University, Dunedin, New Zealand Ordförande: Bitr professor Lars Westerlund, Avd för energivetenskap, Institutionen för teknikvetenskap och matematik, Luleå tekniska universitet Tid: Torsdag den 27 mars 2014, kl 10.00 Plats: E632, Luleå tekniska universitetAvailable from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(7194 kB)9 downloads
File information
File name FULLTEXT01.pdfFile size 7194 kBChecksum SHA-512
eff6165054ae2776793c5c532e4548a3ece0a7e015ccd128757f4c12ae2e12780d18d97dfcdafa2a7c83ad7eb3321ef17844cd09a8bd0ae133ce2600fd356642
Type fulltextMimetype application/pdf
fulltext(8156 kB)17 downloads
File information
File name FULLTEXT02.pdfFile size 8156 kBChecksum SHA-512
d6eca6c741d5d0d01499bbcdb139262ee8fedef67cc3138432ae1f9f4a6b0180d7f817c1054d1e112c29a7a2f9655101302be072f39e5452b616b9ab1c194c65
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Andersson, Jan-Olof
By organisation
Energy Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 26 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 19 hits
ReferencesLink to record
Permanent link

Direct link