Change search
ReferencesLink to record
Permanent link

Direct link
Estimation of snow wetness using multi-offset ground penetrating radar: towards more accurate estimates of snow water equivalent
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Geosciences and Environmental Engineering.
2009 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Measurements of snow water equivalent (SWE) constitute an important input to hydrological models used to predict snowmelt runoffs. The new generation of such models use distributed snow data, including distribution of SWE, as input, and rely on it for calibration and validation. Using ground penetrating radar (GPR) from snowmobiles or helicopters is one of the methods to estimate SWE, and it allows for covering large areas in a short period of time. However, the accuracy offered by GPR is detrimentally affected by the presence of liquid water in the snow. This is a problem since when a snowpack is at its peak, and therefore of the largest interest, it has quite often started to melt so there might be liquid water in the snowpack. The present work is an attempt to solve this problem for SWE estimates made by multi-offset GPR operated from a snowmobile. The main idea is to use radar data already available, and to utilize, in addition to two-way travel time, radar wave attenuation, which both depend on snow wetness. Thus obtained liquid water content of a snowpack can be used to get more accurate estimates of SWE.Using radar wave attenuation to obtain liquid water content requires the relationship between liquid water content and electrical conductivity, which has to be established experimentally. The results of several series of experiments, first establishing this relationship for a specific salt content, and then confirming that variation in salt content does not significantly affect it, are presented in this work.However, there remains another problem to be solved. Attenuation caused by energy dissipation in the snow can only be determined from measured radar wave amplitude if losses due to reflection at the snow/ground interface are known. Since a multi-offset GPR system is in fact an array of antennas, several measurements can be made at each point with radar waves reflecting from the ground with different angles of incidence. It should therefore be possible to calculate angle-dependent reflectivity from radar wave amplitudes using Snell's law and one of Fresnel equations. However, applicability of this method in the presence of measurement errors has to be verified. Initial experiments point to problems due to antenna ring-down from the direct wave interfering with the reflected wave, so further tests of the method should be conducted, or ultimately another method to determine reflectivity of the snow/ground interface should be found. Theoretical and experimental results presented in this thesis lead to the conclusion that when SWE is estimated with a multi-offset GPR system, radar wave amplitudes, available in radar data, can be used to establish liquid water content of a snowpack and hence improve the accuracy of SWE estimates, provided that the problem with establishing reflectivity of the snow/ground interface is solved.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2009. , 25 p.
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
Research subject
Applied Geophysics; Applied Geology
URN: urn:nbn:se:ltu:diva-18175Local ID: 749e5df0-d82c-11de-bae5-000ea68e967bISBN: 978-91-7439-062-9 (print)OAI: diva2:991182
Godkänd; 2009; 20091123 (nilgra); LICENTIATSEMINARIUM Ämnesområde: Tillämpad geofysik/Applied Geophysics Examinator: Docent Angela Lundberg, Luleå tekniska universitet Tid: Torsdag den 17 december 2009 kl 13.00 Plats: F 531, Luleå tekniska universitetAvailable from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(4364 kB)7 downloads
File information
File name FULLTEXT01.pdfFile size 4364 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Granlund, Nils
By organisation
Geosciences and Environmental Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 7 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 11 hits
ReferencesLink to record
Permanent link

Direct link