Change search
ReferencesLink to record
Permanent link

Direct link
Linear control of systems with actuator constraints
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Signals and Systems.
1993 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis deals with the problem of how to design a linear and time invariant controller (continuous- or discrete-time) for a SISO- or SIMO-system with amplitude constraints in the actuator. One of the basic ideas is to model the constraints by means of a 'disturbance' δ acting at the input of the process. That is, whenever the actuator saturates, the difference between its output and input is interpreted as being caused by this 'disturbance'. Since the non-linearity thus becomes hidden in a non-linear relationship between the controller output and δ , the system appears to be linear. It is discussed how this makes it possible to utilize conventional linear theory to gain insight about how the closed-loop system is affected by actuator saturation. This effect is interpreted as a windup phenomenon, and its dynamic properties are characterized by the transfer operator Hδ from δ to the output of the system. By investigating some of the anti-windup methods which are most frequently encountered in the literature, it is revealed that none of them provides a sufficient parameterization with respect to the needs for manipulation of Hδ It is shown how this problem can be overcome by extending the controller with some additional 'anti-windup dynamics', in such a way that the corresponding modes are excitable only by δ This is done for both a polynomial and a state-space parameterization, where in the latter case a general form and an 'explicit-observer' form are considered. Since the additional modes appear as poles in Hδ it becomes possible to interpret the anti-windup design as a pole-placement problem. This makes the method well-suited for incorporation as a natural step in conventional text-book methods for design of linear controllers. This possibility is emphasized through the development of a design algorithm for polynomial-controllers (with antiwindup) intended for SISOsystems. It is demonstrated how suitable locations for the poles of Hδ can be found by means of either a time- or a frequency-domain approach. In the latter, describing function analysis is utilized as a tool for prediction of whether a certain location is likely to cause problems with 'repeated saturation' (non-linear oscillations).

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 1993. , 209 p.
Doctoral thesis / Luleå University of Technologyy… → 31 dec 1996, ISSN 0348-8373 ; 119
Research subject
Control Engineering
URN: urn:nbn:se:ltu:diva-18103Local ID: 6dca8200-f67b-11db-ac79-000ea68e967bOAI: diva2:991109
Godkänd; 1993; 20070429 (ysko)Available from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(82850 kB)104 downloads
File information
File name FULLTEXT01.pdfFile size 82850 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Signals and Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 104 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 24 hits
ReferencesLink to record
Permanent link

Direct link