Change search
ReferencesLink to record
Permanent link

Direct link
Development and characteristics of a fully recycled CF/PP composite
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The increasing industrial use of carbon fibre in e.g. aircraft and wind turbines calls for strategies for their recovery and possible reuse. In addition, tremendous amount of energy is needed to be able to manufacture pristine carbon fibres. In this work, an engineering composite material was manufactured from recyclates. Processing scrap from PURE was extensively studied in terms of its stability and processability as a thermoplastic matrix material. Polypropylene scrap material was reprocessed into a film by press forming and introduced into a stack of carbon fibre preforms made from recycled carbon fibres recovered via a pyrolysis process from aircraft structures. The preform stack was heated and the composite material was manufactured by press forming. A challenging issue in this work was to achieve the desired distribution of the recovered carbon fibres in the fibre preforms. Here, a paper making method was employed to distribute the recovered carbon fibres randomly in the plane. It is well known that the fibre/PP interface properties are often the weakest link in the composite performance. Several modifications, including the addition of maleic anhydride grafted polypropylene (MAPP), are often used. MAPP improves the interface bonding between the fibre and polymer matrix by two simultaneous reactions. Firstly, the long molecular chain is responsible for chain entanglements and co-crystallisation with the non-polar PP matrix. These entanglements provide mechanical integrity to the host material. Secondly, the anhydride groups chemically interact with the functional groups on the fibre surface. The addition of MAPP has been found to improve the interface and increase the stiffness and strength of the composite. Inelastic mechanical behaviour in tension of a recycled polypropylene (rPP) matrix and a rPP matrix with addition of 10% of maleic anhydride grafted polypropylene (rPP+MAPP) was characterised and compared. The time dependent response was decomposed into nonlinear viscoelastic and viscoplastic parts and each of them quantified. It was found that the elastic properties of the rPP matrix did not degrade during loading. The addition of MAPP to the rPP matrix did not change the mechanical properties of the material. A non-linear material model was developed and the involved parameters (stress dependent functions) were identified. The model was then validated in a stress controlled test at a constant stress rate. The inelastic and time dependent behaviour of the MAPP modified composite material in tension was analysed. A series of quasistatic tensile and creep tests were performed to identify the material model, which accounts for: a) damage related stiffness reduction, b) development of stress and time dependent irreversible strains described as viscoplasticity, c) nonlinear viscoelastic behaviour. Fibre length distribution was investigated before and after composite manufacturing process to investigate the influence of the processing conditions on the fibre degradation. The quality of the manufactured novel, fully recycled, composite material regarding void content and fibre orientation was examined by microscopy.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2011.
Series
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Research subject
Polymeric Composite Materials
Identifiers
URN: urn:nbn:se:ltu:diva-18096Local ID: 6cd55184-1ccd-42b9-b478-e924fe7549daISBN: 978-91-7439-286-9OAI: oai:DiVA.org:ltu-18096DiVA: diva2:991102
Note
Godkänd; 2011; 20110426 (magszp); DISPUTATION Ämnesområde: Polymera konstruktionsmaterial/Polymeric Composite Materials Opponent: Professor Geoff Gibson, School of Mechanical and Systems Engineering, Newcastle University, Newcastle, UK Ordförande: Adj professor Leif Asp, Institutionen för teknikvetenskap och matematik, Luleå tekniska universitet, Luleå. Tid: Torsdag den 8 september 2011, kl 10.00 Plats: E231, Luleå tekniska universitetAvailable from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(8032 kB)21 downloads
File information
File name FULLTEXT01.pdfFile size 8032 kBChecksum SHA-512
38abd38b8235628953446093bb98391175ff2b9c2d273f230a41feacfe8b27698746e8da6ea0a5d9b681d8c8715542bfb3e8edba3c4540afb29a5576cac7f7d8
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Szpieg, Magdalena
By organisation
Material Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 21 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 6 hits
ReferencesLink to record
Permanent link

Direct link