Change search
ReferencesLink to record
Permanent link

Direct link
Ab initio modeling of xanthate adsorption on ZnS surfaces
2005 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Modeling surface adsorption requires systems of hundreds of atoms. To model such systems at an ab initio level successfully, we need to avoid traditional quantum chemical methods. In the present work we have shown that density functional theory is a powerful modeling tool for large chemical systems especially in combinations with pseudopotentials This is validated by an initial study of ethyl and heptyl xanthates and their sodium/potassium salts. In this study, all electron calculations using both Hartree-Fock and density functional theory methods are compared with experimental infrared results. To do this the influence of basis sets and modeling approaches on the geometrical structure and the vibrational modes are examined. This includes comparing the pseudopotential and full electron potential approaches. Results obtained from pseudopotential methods are in close agreement with both all electron calculations as well as experimental results, here used to study adsorption of heptyl xanthate ZnS surfaces. Vibrational frequencies of the adsorbed species is presented, together with calculations of the tilt angles. The investigation of the tilt angles resulted in 20.3° 20.6° and 25.2° for the 100, 110 and 111 surfaces respectively. Heptyl xanthate forms a bridging confirmation on both the 110 and 111 surfaces and a bidentate confirmation on the 100 surface. Assignments of vibrational modes of ethyl/heptyl xanthate molecule and its corresponding potassium/sodium salts are also reported.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2005. , 90 p.
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757 ; 2005:37
Research subject
Scientific Computing
URN: urn:nbn:se:ltu:diva-18069Local ID: 6ad6c330-9ef4-11db-8975-000ea68e967bOAI: diva2:991075
Godkänd; 2005; 20070108 (haneit)Available from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(937 kB)2 downloads
File information
File name FULLTEXT01.pdfFile size 937 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Hellström, Pär

Search outside of DiVA

GoogleGoogle Scholar
Total: 2 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 6 hits
ReferencesLink to record
Permanent link

Direct link