Change search
ReferencesLink to record
Permanent link

Direct link
Increasing the hosting capacity of distributed energy resources using storage and communication
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
2012 (English)Licentiate thesis, comprehensive summary (Other academic)Alternative title
Öka acceptansgränsen för förnyelsebaraenergikällor med hjälp av lagring och kommunikation i smarta elnät (Swedish)
Abstract [en]

The use of electricity from Distributed Energy Resources like wind and solar powerwill impact the performance of the electricity network and this sets a limit to theamount of such renewables that can be connected. Investment in energy storage andcommunication technologies enables more renewables by operating the networkcloser to its limits. Electricity networks using such novel techniques are referred toas “Smart Grids”. Under favourable conditions the use of these techniques is analternative to traditional network planning like replacement of transformers orconstruction of new power line.The Hosting Capacity is an objective metric to determine the limit of an electricitynetwork to integrate new consumption or production. The goal is to create greatercomparability and transparency, thereby improving the factual base of discussionsbetween network operators and owners of Distributed Energy Resources on thequantity and type of generation that can be connected to a network. This thesisextends the Hosting Capacity method to the application of storage and curtailmentand develops additional metrics such as the Hosting Capacity Coefficient.The research shows how the different intermittency of renewables and consumptionaffect the Hosting Capacity. Several case studies using real production andconsumption measurements are presented. Focus is on how the permitted amountof renewables can be extended by means of storage, curtailment and advanceddistributed protection and control schemes.

Abstract [sv]

Användningen av el från förnyelsebara energikällor som vind och sol kommer att påverka elnätet, som sätter en gräns för hur mycket distribuerad energiproduktion som kan anslutas. Investeringar i storskalig energilager och användning av modern kommunikationsteknologi gör det möjligt att öka andelen förnyelsebarenergi genom att nätet kan drivas närmare sina gränser. Elnät med sådana nya tekniker kallas ofta för ”Smarta Elnät". Implementering av sådana smarta elnät kan vara ett alternativ till traditionell nätplanering och åtgärder som utbyte av transformatorer eller konstruktion av nya kraftledningen.Nätets acceptansgräns är ett objektivt mått för att bestämma gränsen för nätets förmåga att integrera ny förbrukning eller produktion. Målet är att skapa större transparens och bidra till ett bättre faktaunderlag i diskussioner mellan nätoperatörer och ägare av distribuerade energiresurser. Denna avhandling utökar acceptansgränsmetoden för tillämpning med energilager och produktions nedstyrning och utvecklar ytterligare begrepp så som acceptansgränsen koefficienten.Forskningen visar hur varierbarheten hos olika förnyelsebara energikällor samverkar med förbrukningen och påverkar nätets acceptansgräns. Flera fallstudier från verkliga elnät och med uppmätt produktion och konsumtion presenteras. Fokus är på hur den tillåtna mängden förnyelsebara energikällor kan ökas med hjälp av energilagring, kontrollerad produktionsnedstyrning och med avancerad distribuerade skydd och kontroll applikationer.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2012. , 153 p.
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
Keyword [en]
Renewable Energy Generation, Energy Storage, Hosting Capacity, Curtailment, Demand Response, Dynamic Line Rating, Power System Communication, Smart Grid, Technology - Electrical engineering, electronics and photonics
Keyword [sv]
Förnyelsebara energikällor, Energilagring, Acceptansgräns, Kommunikation i kraftsystem, Smarta elnät, Teknikvetenskap - Elektroteknik, elektronik och fotonik
Research subject
Energy Engineering; Electric Power Engineering
URN: urn:nbn:se:ltu:diva-18009Local ID: 65c91572-9004-4638-b250-16dfdb4e7f48ISBN: 978-91-7439-455-9 (print)OAI: diva2:991015
SmartGrid Energilager

Godkänd; 2012; Bibliografisk uppgift: Nicholas Etherden works at STRI AB ( in Gothenburg, Sweden. When he is not pursuing his half-time PhD studies he works as a specialist consultant in the field of Power Utility Automation, specialising on the IEC 61850 standard for power utility automation (today widely used in substations as well as some wind parks, hydro plants and DER and Smart Grid applications such as vehicle-to-grid integration). The author of this thesis received his Master of Science in Engineering Physics from Uppsala University 2000. Side tracks during his engineering studies included studies in theoretical philosophy, chemistry, ecology and environmental sciences as well as chairing the Swedish student committee of the Pugwash Conferences on Science and Worlds Affairs and later board member of the International Network of Engineers and of Scientists for Global Responsibility (INES) and chair of Swedish Scientists and Engineers Against Nuclear Arms. He has been a trainee at ABB in Västerås Sweden and spent six years as developer and team leader for the application development of a new relay protection family (ABB IED 670 series). In parallel to his professional work he studied power system engineering at Mälardalens University and travelled to all continents of the world. Since 2008 he is responsible for the STRI IEC 61850 Independent Interoperability Laboratory and a member of IEC Technical Committee 57 working group 10 "Power system communication and associated data models” and UCA/IEC 61850 User group testing subcommittee. He is co-author of IEC 61850-1 and main contributor to “Technical Report on Functional Test of IEC 61850 systems” and has held over 25 hands-on courses around the world on IEC 61850 “Communication networks and systems for power utility automation”.; 20120514 (niceth); LICENTIATSEMINARIUM Ämnesområde: Energiteknik/Energy Engineering Examinator: Professor Math Bollen, Institutionen för teknikvetenskap och matematik, Luleå tekniska universitet Diskutant: Professor Sami Repo, Tampere University of Technology, Finland Tid: Onsdag den 13 juni 2012 kl 10.00 Plats: Hörsal A, campus Skellefteå, Luleå tekniska universitet

Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2016-10-19Bibliographically approved

Open Access in DiVA

fulltext(7625 kB)40 downloads
File information
File name FULLTEXT02.pdfFile size 7625 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Etherden, Nicholas
By organisation
Energy Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 40 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 129 hits
ReferencesLink to record
Permanent link

Direct link