Change search
ReferencesLink to record
Permanent link

Direct link
Surface reactions in aqueous suspensions of fluorapatite and iron oxides
Luleå tekniska universitet.
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The main objectives have been to study and model surface reactions of aqueous suspen-sions of minerals with relevance to the dephosphorization of iron oxides by reverse froth flotation. Synthetic hematite, maghemite and fluorapatite in colloidal forms were prepared and thoroughly characterized using XRD, SEM, BET, FT-IR and FT-Raman. The protolytic surface reactions were studied by means of high precision potentiometric titrations at two different ionic strengths. The æ-potentials were measured as a function of pH for maghemite and fluorapatite in aqueous suspensions at 0.10 mol dm-3 ionic strength. Surface complex equilibria according to the constant capacitance model (CCM) were established for aqueous single minerals as well as for a mixed mineral suspension of fluorapatite-maghemite. Two different models were adopted for the mixed system. It was found that a model based on the results from the subsystems of fluorapatite and maghemite interpreted titration data extremely well and information about the interac-tions between the two minerals was obtained by this model as well. These interactions were confirmed by SEM/X-ray mapping and FT-Raman spectroscopy. Solid state nu-clear magnetic resonance (NMR) spectroscopy was used to achieve information about the surface reactions of fluorapatite on the molecular level and merge this knowledge with the results from the surface complex model calculations. By means of 1H and 31P MAS NMR the phosphorus and calcium hydroxyl surface sites of fluorapatite were as- signed and their composition and mutual ratio were studied as a function of pH. The adsorption of maghemite and Fe2+-ions as well as the adsorption of the flotation re-agent ATRAC on the fluorapatite surface were studied using 1H and 31P MAS NMR. Maghemite particles and Fe2+-ions were found to be adsorbed in a close vicinity of the 31P nuclei. This was indicated by an increasing broad spinning side band manifold with increasing iron adsorption in the 31P MAS NMR spectra, caused by the influence on the chemical shift anisotropy (CSA) of the 31P nuclei due to the paramagnetic properties of the adsorbed iron species. The adsorption of ATRAC was found to be depending on both pH and concentration. The results from FT-IR and NIR-Raman spectroscopy of ATRAC in ethanol solutions including added calcium nitrate displayed that ATRAC contains four carbonyl functions which are clearly affected by the presence of Ca2+-ions, which indicate their importance on the adsorption of ATRAC at the fluorapatite surface.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2006. , 65 p.
Series
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544 ; 2006:05
Research subject
Chemistry of Interfaces
Identifiers
URN: urn:nbn:se:ltu:diva-17925Local ID: 5e3598b0-814c-11db-aabe-000ea68e967bOAI: oai:DiVA.org:ltu-17925DiVA: diva2:990931
Note
Godkänd; 2006; 20061201 (haneit)Available from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(3319 kB)1 downloads
File information
File name FULLTEXT01.pdfFile size 3319 kBChecksum SHA-512
bfc4adf9edfdd4629b07728ba25cc518b33ca0cd0657c476c793a5cb96678870d7a2d66eb8d0036830b61acf461a7531d9381ea1dc1f5b668430ad1b461458f3
Type fulltextMimetype application/pdf

Search outside of DiVA

GoogleGoogle Scholar
Total: 1 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 5 hits
ReferencesLink to record
Permanent link

Direct link