Change search
ReferencesLink to record
Permanent link

Direct link
Rethinking network management solutions: models, data-mining and self-learning
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Computer Science.
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Network service providers are struggling to reduce cost while at the same time improving customer satisfaction. This thesis addresses three relevant underlying challenges to achievieng these goals: - managing an overwhelming flow of low-quality alarms - understanding the structure and quality of the delivered services - automation of service configurationAll of the these add to an operator's operational costs since manual work is required in order to understand the alarm and service status as well as for configuring new services. We propose solutions based on domain-specific languages, data-mining and self-learning. We look at how domain-models can be used to capture explicit knowledge for alarms and services. In addition, we apply data-mining and self-learning techniques to understand the alarm semantics. The alarm solution is validated with a quantitative analysis based on real alarm documentation and an alarm database from a large mobile service provider. A qualitative analysis of the service management solutions is given based on prototypes and input from service providers.We present an approach to alarm interfaces by providing a formal alarm model together with a domain-specic language, BASS. This means that we can verify the consistency of an alarm interface and automatically generate artifacts such as alarm correlation rules or alarm documentation based directly on the model. From a baseline without any correlation, our alarm domain-model based on vendor documentation could automatically find the root-cause alarms in 40% of the cases. In the process of producing an alarm model from pre-existing alarm documentation for a commercial product, we found over 150 semantic warnings.We also propose a domain specific language called SALmon, which allows for efficient representation of service models, along with a computational engine for calculation of service status. Furthermore, this thesis illustrates how we can achieve automatic service configuration based on YANG, the domain-specific language standardized in the IETF. Prototypes show that the service domain-models can capture the semantics of service models, and automatically render parts of the service management solution. It is not always possible to capture expert knowledge in models. Therefore, we propose a data-mining and self-learning solution that learns alarm priorities from the decisions taken by the network administrators. The solution assigns the same severity as a human expert in 50% of the cases compared to 17% for the original alarm severity.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2012.
Series
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Research subject
Mobile and Pervasive Computing
Identifiers
URN: urn:nbn:se:ltu:diva-17778Local ID: 524ec0f6-7cb3-45bd-b350-72a21f0b7c6eISBN: 978-91-7439-390-3OAI: oai:DiVA.org:ltu-17778DiVA: diva2:990784
Note
Godkänd; 2012; 20120116 (stewal); DISPUTATION Namn: Stefan Wallin Ämnesområde: Mobila system/Mobile Systems Opponent: Professor Rolf Stadler, Skolan för elektro- och systemteknik, KTH, Stockholm, Ordförande: Professor Christer Åhlund, Institutionen för system- och rymdteknik, Luleå tekniska universitet Tid: Torsdag den 23 februari 2012, kl 10.00 Plats: D770, Luleå tekniska universitetAvailable from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(8378 kB)14 downloads
File information
File name FULLTEXT01.pdfFile size 8378 kBChecksum SHA-512
ebc9127cc35bcfd255a93a8aeb0e8b2674d266908dbcd5f622e8a6264599d14dfe6519dfa8a5bf05732992d02ecb9f2278137b8cff81fd4c8d0f93f8f289f9fe
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Wallin, Stefan
By organisation
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 14 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 33 hits
ReferencesLink to record
Permanent link

Direct link