Change search
ReferencesLink to record
Permanent link

Direct link
Deformation and failure of rock
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this doctoral thesis work the relationship between the deformation and the initiation of failure around an underground excavation was studied. In this work data from observed failure and measured deformations was used. This work is based on information obtained from laboratory test, underground field cases and numerical analysis. Field data from the underground cases was used as input data in the numerical analysis. The underground field cases provided good information for analysis of failure and deformation. These cases provided valuable information due to the following characteristics: (i) spalling and deformation can be studied from the Garpenberg raise and Zinkgruvan exploration drift cases using numerical analysis, (ii) bending and shear can be studied from the Kristineberg mine since deformation measurements were conducted in situ, and (iii) wedge failure can be studied from the Kiirunavaara drift case since it was observed and deformation was measured in situ. The failure-deformation process was analysed for fifteen tested rock types. Rock characteristics such as grain size and mineral compositions for these rock types were compared with a number of strain quantities. The comparison revealed that the crack damage lateral strain was strongly influenced by the grain size. Furthermore, the mineral composition slightly influenced the examined quantities. Both crack volumetric and volumetric strain quantities seems to be sensitive to grain size. The comparison of the strain quantities, representing different deformation stages obtained from laboratory tests using information from limestone and quartzite, and calculated for the Garpenberg raise and the Zinkgruvan exploration drift cases using numerical analysis, helped to interpret the failure process around the opening in these two cases. The distances for strain concentration bands from the linear-elastic brittle and linear-elastic perfectly plastic analyses that were closest to the boundary were similar to the depth of the observed fallout for both cases. The deformation pattern of a monitored stope in Kristineberg mine helped to determine that bending and shear failure took place in the HW and FW side of the stope. The shear failure was first observed by borehole camera surveys inside the walls, and then later daylighted on the surface of the stope. The onset of the shear failure was represented for a convergence of 56 mm. In the Kiirunavaara drift case, the results from two local models (2D and 3D) showed qualitatively good agreement with the field observations. The models are able to simulate the wedge and determine the stability of the wedge. It can be inferred that the wedge did not fallout and remained stable. In fact the rock reinforcement installed in the field was not necessary to keep the wedge in place. This work conclude that the failure process of each failure mechanism develop differently. The failure process due to spalling can occur very fast, while for bending and shear failure it is slow. The behaviour of wedges can be monitored as long as they are stable during the excavation process. Monitoring data from extensometers, total stations, convergence measurement, borehole camera surveys, combined with appropriate numerical analysis can be used for estimating the failure and deformation of spalling, bending, shear and wedge failure. Deformation values were estimated for all failure mechanisms. Strain based failure criteria have to be developed and other input parameters have to be collected. Keywords: failure, deformation, spalling, bending, shear, wedge, laboratory test, underground cases, numerical analysis, monitoring, onset of failure, crack initiation, crack damage, fallout, stability, failure criterion.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2013. , 86 p.
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Research subject
Mining and Rock Engineering
URN: urn:nbn:se:ltu:diva-17715Local ID: 4cd2b3f0-ec73-4387-8618-d9ecf0d1552bISBN: 978-91-7439-809-0 (print)ISBN: 978-91-7439-810-6 (electronic)OAI: diva2:990720
Godkänd; 2013; 20131120 (kelper); Tillkännagivande disputation 2013-11-27 Nedanstående person kommer att disputera för avläggande av teknologie doktorsexamen. Namn: Kelvis del Carmen Pérez Hidalgo Ämne: Berganläggningsteknik/Rock Mechanics and Rock Engineering Avhandling: Deformation and Failure of Rock Opponent: Professor emeritus Håkan Stille, Kungliga Tekniska Högskolan, Stockholm Ordförande: Professor Erling Nordlund, Institutionen för samhällsbyggnad och naturresurser, Luleå tekniska universitet Tid: Torsdag den 19 december 2013, kl 10.00 Plats: F1031, Luleå tekniska universitetAvailable from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(29253 kB)12 downloads
File information
File name FULLTEXT01.pdfFile size 29253 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Hidalgo, Kelvis del Carmen Pérez
By organisation
Mining and Geotechnical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 12 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 40 hits
ReferencesLink to record
Permanent link

Direct link