Change search
ReferencesLink to record
Permanent link

Direct link
Stiffness characterization in Non-Crimp Fabric Composites
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
2014 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Lightweight materials with high stiffness and damage tolerance are requested for aerospace, marine and automotive industries. Many types of composite materials are today used in various types of load carrying structures, due to their excellent strength and stiffness to weight ratio. Simplicity, reliability and low cost of the material processing are important factors affecting the final selection. In the last years new types of composites; Non-crimp-fabric (NCF) reinforced composites, where the cost-efficiency is reached by using dry preforms which are impregnated by resin infusion, resin transfer molding etc.; have made a break-through and have been widely used.As its names indicates, NCF composites consist of layers with ideally straight fiber bundles oriented in different directions, knitted by secondary yarn and separated by resin. This technique of dry preforms impregnated by resin infusion or RTM combine a perfect placement of reinforcement with easy, cheap and automated manufacturing. It produces a composite that can be formed easily in complex shapes, with improvement in damage tolerance as well as the out-of-plane fracture toughness. However, the stitching distorts and crimps the fiber bundles, which leads to large out-of-plane waviness. This deviation affects the mechanical properties of NCF composites. The bundle crimps reduces the stiffness and causes incorrect predictions of the laminate elastic properties employing assumption of the classical laminate theory (CLT).In the present study, the fiber tow waviness is assumed as sinusoidal and the undulation effect on the stiffness reduction is analyzed using Finite Element Method (FEM). The waviness parameters i.e. wavelength and amplitude as well as geometrical parameters like bundle thickness are used in modeling the elastic properties of the representative volume element of the waved structure using meso-scale FEM analysis.The possibility of applying CLT for cross-ply NCF composite stiffness determination is approved, by replacing the curved structure by idealized straight one using effective stiffness for the 0⁰- and the 90⁰- layers. The cross-ply NCF stiffness reduction is dominated by the stiffness reduction of the 0⁰-layer. The 0⁰-layer effective stiffness can be determined either by modeling a single curved tow subjected to distributed load, to reproduce its interaction with the neighboring layers, together with symmetry boundary conditions, or using a master curve approach, where a knock down factor is introduced to characterize the stiffness reduction and analytical expression is suggested. This expressions allows for determination of knock down factor for any given wavelength and amplitude of the waviness.

Place, publisher, year, edition, pages
Luleå tekniska universitet, 2014. , 75 p.
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
Research subject
Polymeric Composite Materials
URN: urn:nbn:se:ltu:diva-17684Local ID: 4a97eb50-da85-4ac5-b39c-8de5d65e88c0ISBN: 978-91-7439-832-8 (print)ISBN: 978-91-7439-833-5 (electronic)OAI: diva2:990689
Godkänd; 2014; 20140107 (hanzri); Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Hana Zrida Ammar Ämne: Polymera konstruktionsmaterial/Polymeric Composite Materials Uppsats: Stiffness Characterization in Non-Crimp Fabric Composites Examinator: Professor Janis Varna, Institutionen för teknikvetenskap och matematik, Luleå tekniska universitet Diskutant: PhD, Research Engineer Spyros Tsampas, Swerea SICOMP AB, Piteå Tid: Onsdag den 19 februari 2014 kl 10.15 Plats: E231, Luleå tekniska universitetAvailable from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(3528 kB)12 downloads
File information
File name FULLTEXT01.pdfFile size 3528 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Zrida, Hana
By organisation
Material Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 12 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 92 hits
ReferencesLink to record
Permanent link

Direct link