Change search
ReferencesLink to record
Permanent link

Direct link
Colliding asperities: a tribological event on micro scale
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
2013 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

In order to predict and optimize energy efficiency, fuel consumption and service life, friction and wear need to be predetermined with higher accuracy than what is possible today. This prediction and optimization is crucial for the development of sustainable mechanical components and systems with excellent environmental performance.Better and more reliable models for predicting friction, wear and scuffing risk in boundary lubricated contacts will be developed in this project. This includes a model for asperity-asperity collision with components of contact mechanics, thermodynamics and physics.In the boundary lubricated contact, loads are mostly carried by asperities. This makes the real area of contact is so different from the nominal contact area, a small fraction of the nominal contact area supporting the load will cause high contact stress and large deformation. Surfaces of machine components operating under high stress in long period can easily cause damage. Therefore, an elastoplastic analysis of asperity collision was conducted with the Finite Element Method. The contact area and contact stress were studied based on the change of parameters as adhesive friction coefficient, interference and collision velocity. The plastically deformed area and residual stress after collision were also depicted in figures.Friction will generate heat in the sliding contact, and eventually cause a temperature rise. Due to the heat is generated at asperities, heat flux is not continuous and the temperature both increase to a relatively high value and decrease to a small value in very short time. This kind of temperature is often called flahtemperature, and it is important to study because it can affect the viscosity of the lubricant, the formation of tribolayer and in turn it will affect the mechanical properites of the surface. The flash temperature was analyzed based on the previous study of the elastoplastic asperity collision, the times for flash temperature to reach maximum value were given and thermal expansion was also included.The FEM model can conduct a study regardless of the geometry and material properties of the surface asperity, but due to the very fine mesh required at the interface, it is not suitable to carry out an analysis of the rough surface contact. Therefore the Boundary Element Method was adopted to have a thorough study of the rough surface contact. The features of the analysis coudcuted in the FEM model, such as strain hardening and friction, should be replicable in the BEM model. In the end, an Engineering tool for the rough surface contact will be developed.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2013. , 75 p.
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
Research subject
Machine Elements
URN: urn:nbn:se:ltu:diva-17656Local ID: 47706516-98c3-44ef-972b-ada881be1b18ISBN: 978-91-7439-728-4 (print)ISBN: 978-91-7439-729-1 (electronic)OAI: diva2:990661
Godkänd; 2013; 20130815 (kang); Tillkännagivande licentiatseminarium 2013-09-27 Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Shaojie Kang Ämne: Maskinelement/Machine Elements Uppsats: Colliding Asperities: a Tribological Event on Micro Scale Examinator: Professor Roland Larsson, Institutionen för teknikvetenskap och matematik, Luleå tekniska universitet Diskutant: Ph.D Stefan Björklund, Kungliga Tekniska Högskolan, Stockholm Tid: Fredag den 18 oktober 2013 kl 10.00 Plats: E632, Luleå tekniska universitetAvailable from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(3733 kB)28 downloads
File information
File name FULLTEXT01.pdfFile size 3733 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Kang, Shaojie
By organisation
Machine Elements

Search outside of DiVA

GoogleGoogle Scholar
Total: 28 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 81 hits
ReferencesLink to record
Permanent link

Direct link