Change search
ReferencesLink to record
Permanent link

Direct link
Potential of fly ashes for neutralisation of acid mine drainage from coal mine waste rock
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Geosciences and Environmental Engineering.ORCID iD: 0000-0003-2810-8083
2014 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Many countries around the world use coal as fuel for the purpose of power generation. The extraction of coal produces large volumes of waste rock (WR) that are sometimes sulphide rich (principally containing iron sulphides such as pyrite (FeS2) and pyrrhotite (Fe1-xS)), with varying quantities of trace elements such as As, Si, Cu, Zn, Ni, Co, Mo and Cr etc). Such waste is environmentally sensitive due to the risk of oxidation in presence of atmospheric oxygen and water. Sulphide oxidation may result in acidic waters (acid mine drainage, AMD), which often contains high loads of dissolved metals. Coal combustion results in large amounts of fly ash (FA), which also is of environmental concern. However, FA is alkaline and may potentially be used for neutralisation of AMD. Therefore, the AMD producing potential of WR from coal mining and the neutralisation potential of FAs from coal and biomass combustion was studied with the ultimate goal to develop a methodology to decrease the environmental problems related to these materials.WR was sampled form the Lakhra coal field in Pakistan, which has an estimated coal reserve of 1.3 Bton, from lignite to sub-bituminous in quality. The WR samples were characterised by mineralogical and geochemical methods and the acid producing potential was determined by static (Acid Base Accounting) and kinetic (modified humidity cells test) methods. Besides organic material, the WRs are composed of quartz, pyrite, kaolinite, hematite and gypsum with varying amounts of calcite, lime, malladerite, spangolite, franklinite and birnessite. The Lakhra WR has strong potential to generate AMD (-70 to -492 kg CaCO3/ton) and pollute natural waters by leaching of elements such as Cd, Co, Cr, Cu, Ni, Pb, Zn, Fe and SO42-. Three different FAs based on the origin, fuel type and storage methods were studied. They were characterised by mineralogical and geochemical methods, the leachability was studied by batch leaching tests and the potential for buffering acids and neutralisation of AMD was quantified. Fly ash from burning i) brown coal (lignite) in Pakistan (PK), ii) black (bituminous) coal from Finland (FI) and iii) biomass FA provided by a sulphate pulp and paper mill in Sweden (SE) were studied. All ashes contained quarts, PK also iron oxide, anhydrite, and magnesioferrite, FI also mullite and lime, and SE also calcite and anorthite. All ashes were enriched in As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn compared to continental crust, and all ashes had a strong neutralisation potential, the bioash, SE, in particular. The results are encouraging and suggest that it is possible to use FA to mitigate the environmental problems with coal mine WR. Methods for that will be the focus for the continued research.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2014. , 71 p.
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
Research subject
Applied Geology
URN: urn:nbn:se:ltu:diva-17607Local ID: 4456163a-5a94-4d85-a621-0167bb0e93f6ISBN: 978-91-7583-192-3 (print)ISBN: 978-91-7583-193-0 (electronic)OAI: diva2:990612
Godkänd; 2014; 20141013 (asiqur); Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Asif Qureshi Ämne: Tillämpad geologi/Applied Geology Uppsats: Potential of Fly Ashes for Neutralisation of Acid Mine Drainage from Coal Mine Waste Rock Examinator: Professor Björn Öhlander Institutionen för samhällsbyggnad och naturresurser Luleå tekniska universitet Diskutant: Dr Josef Mácsik Ecoloop AB Stockholm Tid: Torsdag den 18 december 2014 kl 13.00 Plats: E246, Luleå tekniska universitetAvailable from: 2016-09-29 Created: 2016-09-29 Last updated: 2016-12-06Bibliographically approved

Open Access in DiVA

fulltext(4071 kB)16 downloads
File information
File name FULLTEXT01.pdfFile size 4071 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Qureshi, Asif
By organisation
Geosciences and Environmental Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 16 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 50 hits
ReferencesLink to record
Permanent link

Direct link