Change search
ReferencesLink to record
Permanent link

Direct link
Measurements of deformations and flows inside optically nontransparent materials
2005 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

When a material is mechanically loaded or experience environmental changes such as for example thermal or pressure variations it is affected, in some way, due to these new conditions. In order to measure engineering properties related to these structural changes, such as for example deformation and strain, we need to gain information about them that are precise and reliable. There exist many different methods for such measurements. However, most often these methods measure the pure surface response due to the deforming mechanism, since this is what can be observed directly by use of cameras and various sensors. We therefore know a lot about how the material surface behaves but not much about how the structure beneath the surface behaves. As long as the material structure is reasonably homogeneous this may be enough but as the complexity of the material structure increase it gets more important to obtain information from the inside of the material. In this thesis two techniques with the ability to measure internal deformations in optically non-transparent materials are presented. The fundamental principle of both the techniques is the same. The techniques utilize a correlation based routine to estimate deformations from two and three dimensional image data collected with x-ray-based methods. The first technique, called Digital Speckle Radiography (DSR), measures two-dimensional deformation fields, in a single plane within the examined material. The deformations are estimated by the use of image correlation applied to two-dimensional digital x-ray images. The second technique, called Tomographic 3D-DSP, measures the three-dimensional unrestricted deformation, in every point of the examined object. Here the correlation procedure is carried out on volumetric object data collected with computed tomography (CT). Three separate experiments have been carried out, to investigate the behaviour of the two techniques. In two of the experiments the two-dimensional technique is applied. In the first of these the flow profile of an alumina powder is measured as it flows through a silo configuration. In the second experiment the motion in a thin film of glue, sandwiched between two wooden plates, exposed to shear, is measured. Finally in the third experiment the three-dimensional technique is used to measure the deformations in bone tissue when being exposed to a mechanical load. In this case two measurements have been carried out, and compared. These differ through a small damage that has been introduced to the bone tissue in the second measurement.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2005. , 53 p.
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757 ; 2005:26
Research subject
Experimental Mechanics
URN: urn:nbn:se:ltu:diva-17476Local ID: 38dc27a0-90c9-11db-8975-000ea68e967bOAI: diva2:990481
Godkänd; 2005; 20061221 (haneit)Available from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(4777 kB)2 downloads
File information
File name FULLTEXT01.pdfFile size 4777 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Forsberg, Fredrik

Search outside of DiVA

GoogleGoogle Scholar
Total: 2 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 3 hits
ReferencesLink to record
Permanent link

Direct link