Change search
ReferencesLink to record
Permanent link

Direct link
Process water geochemistry at the Kiirunavaara iron mine, northern Sweden
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Geosciences and Environmental Engineering.
2009 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Understanding process water characteristics and variations is important for ensuring the quality of mineral processing of iron ore. Large amounts of water are used, and the quality of the water can be crucial for processes such as flotation, agglomeration and balling. In this study, changes and variations in process water geochemistry at the Kiirunavaara iron mine have been studied in a time series from 1989 to 2008. Long-term trends at single sampling stations in the process chain as well as changes along the process chain have been studied by statistical methods. This study also quantifies the amounts of major elements such as Ca, Mg, Na, S and Cl carried by process water and by magnetite grain surfaces to the end product, iron ore pellets made from magnetite ore.Ca, S, Na and Cl are the major elements in the process water, accounting for over 80% of the dissolved concentration. Ca has the highest concentrations with an average of 183 mg/l and a maximum of 303 mg/l in the clarifying pond. Corresponding values for S are 162 and 292 mg/l for Cl 132 and 250 mg/l and for Na 88 and 172 mg/l. At all investigated sampling stations (ingoing water and water in the sorting plant, concentration plant, pelletizing plant and clarifying pond) dissolved elemental concentrations increase over the time period. This increase is mainly caused by the increase in production. It is probable that the high concentrations of Ca and S are results of sulfide oxidation and calcite buffering in the drainage area, while the main source of Na, Cl, K and Mg is fluid inclusions liberated during milling of the ore. A prediction of future concentrations of Ca in the process water shows that in future production planning, it will be important to calculate on the basis of higher concentrations in the process water in the whole process chain than are present today. In addition, the amount of colloids (0.22µm – 1kD) in the process water was examined by ultrafiltration. The amounts of various elements sorbed to the magnetite surfaces were estimated by leaching with Milli-Q water, MgCl2, NH4-acetate and Na-acetate. The colloidal fraction was very small, a few percent. For Ca and Mg, sorption to magnetite surfaces was a much more important transport mechanism to the pelletizing process than evaporated process water, but for Na, and S process water was an important carrier.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2009. , 17 p.
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
Keyword [en]
Natural sciences - Earth sciences
Keyword [sv]
Naturvetenskap - Geovetenskap
Research subject
Applied Geology
URN: urn:nbn:se:ltu:diva-17465Local ID: 38165d90-0a43-11de-9f31-000ea68e967bISBN: 978-91-86233-19-8 (print)OAI: diva2:990470
Godkänd; 2009; 20090306 (magwes); LICENTIATSEMINARIUM Ämnesområde: Tillämpad geologi Examinator: Professor Björn Öhlander, Luleå tekniska universitet Tid: Fredag den 3 april 2009 kl 13.00 Plats: F 531, Luleå tekniska universitetAvailable from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(7372 kB)3 downloads
File information
File name FULLTEXT01.pdfFile size 7372 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Westerstrand, Magnus
By organisation
Geosciences and Environmental Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 3 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 9 hits
ReferencesLink to record
Permanent link

Direct link