Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Formation of silicon nitride based materials by nitridation and sintering
Luleå tekniska universitet.
1995 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Todays demands on silicon nitride based materials for structural applications focus on microstructures rendering high strengths and reliability at reasonable costs. This work was mainly aimed at production of sialons for these types of applications by nitridation with subsequent sintering. For this purpose both the influence of different factors on sialon formation and the effect of additives in nitriding was studied, as well as different sintering methods. Y-alfa-sialons with x=0.1 to 0.9 in the formula Yx(Sil2-4.5x,Al4.5x)(01.5x,N 16-1.5x) prepared from silicon nitride powders were sintered in different ways. The crystalline phase composition varied from alfa/beta sialon at x=0.2 to alfa sialon at x=0.4 and alfa sialon + polytypes at x=0.8. The highest alfa-sialon content and density was obtained for x=0.4 with an excess of yttria after sintering 1h at 1750°C and post HIPing 1h at 1750°C and 200 MPa. No glass encapsualtion was needed as closed porosity was obtained in the sintering step. Less residual glass was also present after this processing than when just HIPing. Sintering without pressure, however was not enough to densify the material. Sintering experiments by HT-XRD and in a conventional furnace of an x=0.4 alfa-sialon composition without excess yttria, showed that the amount of alfa-sialon formed was relatively insensitive to small changes in composition. Assuming that the formation mechanisms during the early stages of sintering (first 90-120 min) did not change with time and temperature, therefore made it possible to determine the kinetics of alfa-sialon formation. The activation energy was estimated as 330 kJ/mol. The effect of additives on nitridation was studied by adding silica or additives for sialon formation (AlN, Al2O3, Y2O3, CaO) to silicon. Formation of silicon oxynitride in the case of silica additions and sialon in the case of sialon additions was then observed after nitriding. The amounts of sialon formed depended on the liquid phase properties of the different compositions and the nitriding conditions. Fast nitridation resulted in more sialon formation. By nitriding with different schedules it was shown that this formation could be controlled and also that the nitridation could be speeded up when additives were present. Large amounts of additives made the pore size distribution insensitive to nitriding gas composition. The presence of hydrogen in the gas, however, did increase the amount of reaction at low temperatures and thereby influenced the phase composition. Densification of the materials nitrided with silica present was not possible by pressureless sintering and standard glass encapsulated HIPing. Most of the nitrided sialon compositions, on the other hand, sintered well by most sintering methods used at temperatures of 1850°C, and resulted in homogeneous microstructures. Sinter HIPing rendered unusually elongated grains in the (alfa-sialon (x=0.4), while the beta-sialon (z=2) had high grain aspect ratios for all sintering methods. HIPing at 1750°C gave the highest densities in most cases but resulted in inhomogeneities in the alfa-sialon. These looked very similar to inhomogeneities obtained when AlN additive powder with larger grain sizes was used. This work shows that nitridation with subsequent sintering of sialon compositions is a very promising way of manufacturing high performance structural ceramics based on silicon nitride.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 1995. , 150 p.
Series
Doctoral thesis / Luleå University of Technologyy… → 31 dec 1996, ISSN 0348-8373 ; 167D
National Category
Other Materials Engineering
Research subject
Engineering Materials
Identifiers
URN: urn:nbn:se:ltu:diva-17425Local ID: 35c8ab60-f5b9-11db-ac79-000ea68e967bOAI: oai:DiVA.org:ltu-17425DiVA: diva2:990430
Note

Godkänd; 1995; 20070428 (ysko)

Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2017-05-17Bibliographically approved

Open Access in DiVA

fulltext(88216 kB)15 downloads
File information
File name FULLTEXT01.pdfFile size 88216 kBChecksum SHA-512
8da2d0112cae8b60d4119ad92e909b3390b10afb93397e25d480220f56d9b6836a99e82e8e68c6b3e8f05ac1595e37f153b9bcf71ff8f9d80351408d7bd13021
Type fulltextMimetype application/pdf

Other Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 15 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 77 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf