Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Thermal boundary conditions based on field modeling of fires: Heat transfer calculations in CFD and FE models with special regards to fire exposure represented with adiabatic surface temperatures
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
2013 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Combining computer fluid dynamic, CFD, models with finite element, FE, models to calculate temperature in fire exposed structures can reduce design temperatures in structures while still obtaining the level of structural fire safety stipulated by society. A better understanding of heat transfer and the concept of adiabatic surface temperatures, AST, the transition of data between models can be simplified and more accurate temperature predictions can be made.The thesis focuses on heat transfer calculations by employing AST in particular, and how this can be used as a means of coupling any CFD and FE-analysis code. The thesis presents a method for performing FE-analysis of the thermal response with input data calculated with the computer code FDS, Fire Dynamics Simulator. Parallel to this, the heat balance equation in FDS is tested and an alternate numerical algorithm is developed and tested.Firstly, a verification model is developed to test the radiative and convective part of the existing heat balance equation in FDS. An alternate numerical algorithm for calculation of the heat transfer at surfaces is developed as a more homogenous alternative for CFD codes.Secondly is a study on how to extract AST from an arbitrary point with direction in a CFD calculation using an infinitesimal surface. Instead of modeling numerous small surfaces for extracting AST, a post processor is developed to calculate AST independent of any modeled surface. For CFD codes, such as FDS that depend on a rectilinear grid, this enables calculation of AST in any direction, not only directions normal to the Cartesian planes.Finally, a comparison is made between different methods for calculating temperatures in steel with AST from numerical fire dynamics/modeling calculations. In this thesis there is a comparison between simplified Eurocode techniques, simple finite element analysis and advanced finite element analysis. This study shows the benefit of understanding heat transfer in numerical codes and to implement the concept of AST in a proper way.This way, the concept of combining numerical fire dynamics calculation with numerical (or simplified) thermal calculations can be better understood and implemented.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2013. , p. 81
Series
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
National Category
Building Technologies
Research subject
Steel Structures
Identifiers
URN: urn:nbn:se:ltu:diva-17367Local ID: 31527e3b-713e-46dc-a6ba-82795d81e7b9ISBN: 978-91-7439-772-7 (print)ISBN: 978-91-7439-773-4 (electronic)OAI: oai:DiVA.org:ltu-17367DiVA: diva2:990371
Note
Godkänd; 2013; 20131010 (joasan); Tillkännagivande licentiatseminarium 2013-11-15 Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Joakim Sandström Ämne: Stålbyggnad/Steel Structures Uppsats: Thermal Boundary Conditions Based on Field Modelling of Fires Heat Transfer Calculations in CFD and FE Models With Special Regards to Fire Exposure Represented With Adiabatic Surface Temperatures Examinator: Professor Ulf Wickström, Institutionen för samhällsbyggnad och naturresurser, Luleå tekniska universitet Diskutant: Teknologie doktor, Lektor Stephen Welch, the University of Edinburgh, UK Tid: Torsdag den 5 december 2013 kl 13.00 Plats: F1031, Luleå tekniska universitetAvailable from: 2016-09-29 Created: 2016-09-29 Last updated: 2017-11-24Bibliographically approved

Open Access in DiVA

fulltext(4804 kB)153 downloads
File information
File name FULLTEXT01.pdfFile size 4804 kBChecksum SHA-512
e9f007898f1a6eb674328e2ffc9553c046c55ba708de1f2478de23726ce2907c0f61a84c719fe833bb285f8268d24cd35d0d444f2ed10e26f237041d86d30834
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Sandström, Joakim
By organisation
Structural and Construction Engineering
Building Technologies

Search outside of DiVA

GoogleGoogle Scholar
Total: 153 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 581 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf