Change search
ReferencesLink to record
Permanent link

Direct link
Mechanical characterization and modelling of iron ore pellets
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mechanics of Solid Materials.
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Transportation and storage are important parts in the process chain for producers of iron ore pellets. Knowledge and optimization of these processes are very important for further efficiency progress and increased product quality. The existence of a numerical simulation tool with accurate material characteristics will significantly increase the possibility to predict critical forces in developing new and existing transportation and storing systems and thereby decrease the amount of damaged, fractured or crushed pellets (fines). The objective is to increase the knowledge of the mechanical stresses in iron ore pellets and its effects on the level of damaged material in the handling chain. This includes a better understanding of the iron ore pellets mechanical properties and fracture behaviour. Both experimental and numerical modelling works have been completed to increase the knowledge in these fields. Modelling and characterization of iron ore pellets are carried out at different length scales. Material parameters for an elastic plastic granular continuum material model are determined for modelling large quantities of iron ore pellets. A flow model of iron ore pellets in silos using smoothed particle (SP) method is presented. From experimental two point load tests, a finite element (FE) model of single iron ore pellets is worked out with statistical data for an elastic plastic constitutive model with a fracture criterion. In order to find the relation between the behaviour of iron ore pellets at different length scales, e.g. compare the stresses in a silo to the critical stress inside a single iron ore pellet, mechanical testing and modelling of iron ore pellets on an intermediate length scale is established. A method of instrumented confined compression tests is developed for measuring the global response on a limited amount of iron ore pellets. The same experiment is virtually reproduced with a multi particle finite element model (MPFEM) consisting of individual discretized models of the iron ore pellets. This work has given a better understanding of the mechanical behaviour and fracture of iron ore pellets. Another outcome is refined experimental methods to determine mechanical properties and fracture of iron ore pellets. Constitutive data and numerical models for iron ore pellets are also worked out.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2012.
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Keyword [en]
Engineering mechanics - Solid mechanics
Keyword [sv]
Teknisk mekanik - Fastkroppsmekanik
Research subject
Solid Mechanics
URN: urn:nbn:se:ltu:diva-17284Local ID: 29b5a16c-ca3b-4cc6-8245-04e679681b84ISBN: 978-91-7439-435-1OAI: diva2:990286
Godkänd; 2012; 20120426 (gusgus); DISPUTATION Ämnesområde: Hållfasthetslära/Solid Mechanics Opponent: Dr ing Geir Horrigmoe, Sweco, Narvik, Norge Ordförande: Professor Hans-Åke Häggblad, Avd för material- och solidmekanik, Institutionen för teknikvetenskap och matematik, Luleå tekniska universitet Tid: Onsdag den 30 maj 2012, kl 09.00 Plats: E231, Luleå tekniska universitetAvailable from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(9348 kB)0 downloads
File information
File name FULLTEXT01.pdfFile size 9348 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Gustafsson, Gustaf
By organisation
Mechanics of Solid Materials

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

ReferencesLink to record
Permanent link

Direct link