Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Some new results concerning Banach spaces of infinite matrices and Lorentz sequence spaces
Luleå University of Technology, Department of Engineering Sciences and Mathematics.
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This PhD thesis consists of an introduction and five papers, Which deal with some new spaces of infinite matrices and Lorentz sequence spaces.In the introduction we give an overview of the area that serves as a frame for the rest of the thesis. In particular, a short description of Schur multipliers is given.In Paper 1 we prove that the space of all bounded operators on $ \ ell ^ $ 2 is contained in the space of all Schur multipliers on $ B_w (\ ell ^ 2) $, where $ B_w (\ ell ^ 2) $ is the space of linear (unbounded) operators on $ \ ell ^ 2 $ which map sequences decreasing from $ \ ell ^ $ 2 into sequences from $ \ ell ^ 2 $.In Paper 2 using a special kind of Schur multipliers and G. Bennett 's actually Riza tion technique we characterize the upper triangular matrices positive from $ B_w (\ ell ^ p) $, $ 1 In Paper 3 we consider the Lorentz spaces $ \ ell ^ (p, q) $ in the range $ 1 \ [\ | x \ | _ (p, q) = \ left (\ sum_ (n = 1) ^ \ infty (x_n ^ *) ^ qn ^ (\ frac (q) (p) -1) \ right) ^ \ frac (1) (q)\]is only a quasi-norm. In particular, we derive the optimal constant in the triangle inequality for this quasi-norm, Which leads us to consider the following decomposition rule:\ [\ | x \ | _ ((p, q)) = \ inf \ (\ sum_k \ | x ^ ((k)) \ | _ (p, q) \);\]Where the Infimum is taken over all finite representation $ x = \ sum_k x ^ ((k)) $.In Paper 4 we denotes by $ B_p (\ ell ^ 2) $ the Besov-Schatten space of all upper triangular matrices $ A $ such that\ [\ | A \ | _ (B_p (\ ell ^ 2)) = \ left [\ int_0 ^ 1 (1-r ^ 2) ^ (2p) \ | A''(r) \ | _ (C_p) ^ pd \ lambda (r) \ right] ^ \ frac (1) (p) <\ infty.\]and we prove a natural relationship between the Bergman projection and the Besov-Schatten spaces.In Paper 5, given a matrix $ A $ satisfying that\ [Ax \ in \ ell ^ p \ text (for every) x \ in \ ell ^ p \ text (with) | x_k | \ searrow 0\]For $ 1 \ leq p <\ infty $, we show that\ [A \ in B_w (\ ell ^ p) \ text (if and only if) \ sup_ (n \ in \ mathbb N ^ *) \ left (\ frac (1) (n) \ sum_ (k = 1) ^ n | a_k | ^ p \ right) ^ \ frac (1) (p) <\ infty\]For $ A = a_0 $ given by $ a = (a_k) _ (k \ in \ mathbb (N)) $. We prove that there exist some classes of operators either Belonging to $ B_w (\ ell ^ p) $ or to the space of all Schur multipliers on $ B_w (\ ell ^ p) $.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2010. , 17 p.
Series
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Keyword [en]
Mathematics
Keyword [sv]
Matematik
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:ltu:diva-17270Local ID: 27d8eb10-0b54-11df-bae5-000ea68e967bISBN: 978-91-7439-085-8 (print)OAI: oai:DiVA.org:ltu-17270DiVA: diva2:990271
Note
Godkänd; 2010; 20100127 (ancmar); DISPUTATION Ämnesområde: Matematik/Mathematics Opponent: Professor Vladimir Stepanov, Peoples Friendship University, Moskva, Ryssland Ordförande: Professor Lars-Erik Persson, Luleå tekniska universitet Tid: Fredag den 19 mars 2010, kl 13.00 Plats: D 2214-15, Luleå tekniska universitetAvailable from: 2016-09-29 Created: 2016-09-29 Last updated: 2017-11-24Bibliographically approved

Open Access in DiVA

fulltext(691 kB)19 downloads
File information
File name FULLTEXT01.pdfFile size 691 kBChecksum SHA-512
16f0cbee91ff9dc9881dcae3d8f0577f4e8c3e1fd48e243be8dd24fbc21d445b1e05b4448ee7ce33aa893b71ad41f56ada8fc69076393c4943ef688973a3d9a2
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Marcoci, Anca-Nicoleta
By organisation
Department of Engineering Sciences and Mathematics
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
Total: 19 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 41 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf