Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Model-based Prognostics for Prediction of Remaining Useful Life
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Operation, Maintenance and Acoustics.
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Prognostics and healthmanagement (PHM) is an engineering discipline that aims to maintain the systembehaviour and function, and assure the mission success, safety andeffectiveness. Health management using a proper condition-based maintenance (CBM)deployment is a worldwide accepted technique and has grown very popular in manyindustries over the past decades. These techniques are relevant in environmentswhere the prediction of a failure and the prevention and mitigation of itsconsequences increase the profit and safety of the facilities concerned.Prognosis is the most critical part of this process and is nowadays recognizedas a key feature in maintenance strategies, since estimation of the remaininguseful life (RUL) is essential.PHM can provide a stateassessment of the future health of systems or components, e.g. when a degradedstate has been found. Using this technology, one can estimate how long it willtake before the equipment will reach a failure threshold, in future operatingconditions and future environmental conditions. This thesis focuses especiallyon physics-based prognostic approaches, which depend on a fundamentalunderstanding of the physical system in order to develop condition monitoringtechniques and to predict the RUL.The overall research objective of thework performed for this thesis has been to improve the accuracy and precisionof RUL predictions. The research hypothesis is that fusing the output of morethan one method will improve the accuracy and precision of the RUL estimation,by developing a new approach to prognostics that combines different remaininglife estimators and physics-based and data-driven methods. There are two waysof acquiring data for data-driven models, namely measurements of real systemsand syntactic data generation from simulations. The thesis deals with two casestudies, the first of which concerns the generation of synthetic data andindirect measurement of dynamic bearing loads and was performed atBillerudKorsäs paper mill at Karlsborg in Sweden. In this study the behaviourof a roller in a paper machine was analysed using the finite element method(FEM). The FEM model is a step towards the possibility of generating syntheticdata on different failure modes, and the possibility of estimating crucialparameters like dynamic bearing forces by combining real vibration measurementswith the FEM model. The second case study deals with the development ofprognostic methods for battery discharge estimation for Mars-based rovers. Herephysical models and measurement data were used in the prognostic development insuch a way that the degradation behaviour of the battery could be modelled andsimulated in order to predict the life-length. A particle filter turned out tobe the method of choice in performing the state assessment and predicting thefuture degradation. The method was then applied to a case study of batteriesthat provide power to the rover.

Place, publisher, year, edition, pages
Luleå tekniska universitet, 2015.
Series
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
National Category
Other Civil Engineering
Research subject
Operation and Maintenance
Identifiers
URN: urn:nbn:se:ltu:diva-17263Local ID: 27315e42-9b76-437b-a3d4-3088a88e6ff5ISBN: 978-91-7583-491-7 (print)ISBN: 978-91-7583-492-4 (electronic)OAI: oai:DiVA.org:ltu-17263DiVA: diva2:990264
Note
Godkänd; 2015; 20151116 (madmis); Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Madhav Mishra Ämne: Drift och underhållsteknik/Operation and Maintenance Engineering Uppsats: Model-based Prognostics for Prediction of Remaining Useful Life Examinator: Professor Uday Kumar Institutionen för samhällsbyggnad och naturresurser Avdelning Drift, underhåll och akustik Luleå tekniska universitet Diskutant: Accos. Professor Jyoti Kumar Sinha University of Manchester, Aerospace and Civil Engineering, Manchester Tid: Torsdag 17 december 2015 kl 10.00 Plats: F1031, Luleå tekniska universitetAvailable from: 2016-09-29 Created: 2016-09-29 Last updated: 2017-11-24Bibliographically approved

Open Access in DiVA

fulltext(3741 kB)354 downloads
File information
File name FULLTEXT01.pdfFile size 3741 kBChecksum SHA-512
f4e5248412e51b7bd153c0bdd884e60a41ce8af3b6a50616b500a2d3e220a93ba8e5f982afc35c35083612ed195b25d6f0aba16c8b4364e956292bc6f10d6ca0
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Mishra, Madhav
By organisation
Operation, Maintenance and Acoustics
Other Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 354 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 405 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf