Change search
ReferencesLink to record
Permanent link

Direct link
Investigation of the corrosion and tribocorrosion behaviour of metallic biomaterials
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Metals are commonly used in various biomedical applications due to their excellent mechanical properties, such as high strength, ductility and toughness.However, the main drawback of metallic biomaterials is their high reactivity, which makes them especially susceptible to corrosion when exposed to aqueous environments such as body fluids. In addition to the corrosiveness of body fluids, metallic biomaterials canbe exposed to mechanical loading and wear. The combined effect of corrosion and wear, also known as tribocorrosion, can lead to enhanced release ofmetallic ions and particles into the surrounding fluids and tissue, which can cause different adverse biological reactions and limit the lifetime of metallicimplants. The overall goal of this study was to investigate the tribocorrosion behaviourof different metallic biomaterials. Firstly, the corrosion and tribocorrosionresistance of a novel candidate material, hafnium, have been studied and compared with titanium. Secondly, the tribocorrosion behaviour of Cobalt-Chromium-Molybdenum alloys has been investigated.The study of the corrosion and tribocorrosion behaviour of hafnium and titanium revealed that both metals form a stable oxide layer that provides highprotection to corrosion. Although the oxide layer can be damaged due to frettingand wear, it rapidly reforms when the mechanical damage ceases. However,hafnium showed a tendency to suffer from pitting, especially when the material was subjected to fretting, which could be a major drawback that mightlimit the application of hafnium in biomedical applications.The behaviour of CoCrMo alloys was also investigated. The analysis of the repassivation kinetics of CoCrMo revealed that a second order exponentialdecay can be used to model the current transient after wear damage. This suggests that the repassivation process can be divided in two phases, first thedepassivated area is rapidly recovered by an oxide layer; then, the thickness of the oxide film grows and stabilises. In addition, it was observed that thechemical composition of the environment can affect not only the corrosion but also the tribological performance of the system. This work has provided an insight into the degradation processes and the parameters affecting the corrosion and tribocorrosion behaviour of different metals in simulated body fluids.

Place, publisher, year, edition, pages
Luleå tekniska universitet, 2015.
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Research subject
Machine Elements
URN: urn:nbn:se:ltu:diva-17197Local ID: 2215312b-e401-45b2-bff2-183c18934bb9ISBN: 978-91-7583-358-3ISBN: 978-91-7583-359-0 (PDF)OAI: diva2:990196
Godkänd; 2015; 20150519 (vith); Nedanstående person kommer att disputera för avläggande av teknologie doktorsexamen. Namn: Jorge Rituerto Sin Ämne: Maskinelement/Machine Elements Avhandling: Investigation of the Corrosion and Tribocorrosion Behaviour of Metallic Biomaterials Opponent: Professor T.S.N Sankara Narayanan, Dept of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea Ordförande: Bitr professor Nazanin Emami, Avd för maskinelement, Institutionen för teknikvetenskap och matematik Luleå tekniska universitet, Luleå Tid: Måndag 15 juni kl 09.00 Plats: E231, Luleå tekniska universitetAvailable from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(20867 kB)0 downloads
File information
File name FULLTEXT01.pdfFile size 20867 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Sin, Jorge Rituerto
By organisation
Machine Elements

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

ReferencesLink to record
Permanent link

Direct link