Change search
ReferencesLink to record
Permanent link

Direct link
Non-destructive detection of glue deficiency in laminated wood using thermography
Luleå tekniska universitet.
2003 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The purpose of the work described in this doctorate thesis has been to study the potential of the non-contact and non-destructive test (NDT) method, thermography, to detect glue deficiency beneath a thin laminated layer of wood. The technological applications can for example be found in the parquet flooring industry. The thesis is presented as a monography mainly based on five appended papers. The aim of the theoretical part, based on a literature survey, was to understand how thermal phenomena coupled to thermography theoretically can be described, how different factors and thermography methods affect the results of a thermography measurement and to know the status of delamination detection with thermography. The principal aim of the experimental measurements was to determine penetration depth, resolution, inspection time and repeatability for pulse, heating-up, and lock-in thermography. Using image thresholding as defect classification method, a method comparison has also been performed. Furthermore, the performances of another NDT method, air coupled ultrasound, was briefly investigated. Finally, the contrast detected by the two NDT methods has been validated with the crack test as a destructive reference test method. The results have showed/confirmed that it is possible to detect glue deficiency in laminated wood products with pulse, heating-up and lock-in thermography. Whenever time is not limiting, lock-in thermography should be used for each defect depth and is capable of detecting defects which are 4 times wider than the defect depth with at least a 2.0 mm thick surface layer. Provided the signal to noise ratio (SNR) can be increased, pulse thermography is suitable for defect depths of 0.5-1.0 mm in an on-line application where inspection time is a critical parameter and lies around a few seconds. If the SNR cannot be sufficiently increased for pulse thermography, heating-up thermography is an alternative and should be used for defect depths between 0.5-1.4 mm. For air coupled ultrasound in transmission mode, the contrast and resolution did not decrease with defect depth down to 2 mm, which qualitatively makes it a competetive alternative to thermography. However, its inspection time is proportional to the scanned surface and might be very long if a good resolution is needed. The glue deficiency pattern of the fracture surfaces corresponded very well to the contrast pattern detected by thermography and air coupled ultrasound. Thereby, contrast detected by thermography and air coupled ultrasound can be regarded as being able to indicate reduction of the mechanical resistance of the glue line.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2003. , 71 p.
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544 ; 2003:02
Research subject
Wood Technology
URN: urn:nbn:se:ltu:diva-17195Local ID: 220ff1a0-7026-11db-962b-000ea68e967bOAI: diva2:990194
Godkänd; 2003; 20061109 (haneit)Available from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(48344 kB)0 downloads
File information
File name FULLTEXT01.pdfFile size 48344 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

ReferencesLink to record
Permanent link

Direct link