Change search
ReferencesLink to record
Permanent link

Direct link
Failure diagnostics using support vector machine
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Operation, Maintenance and Acoustics.
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Failure diagnostics is an important part of condition monitoring aiming to identify incipient failures in early stages. Accurate and efficient failure diagnostics can guarantee that the operator makes the correct maintenance decision, thereby reducing the maintenance costs and improving system availability. The Support Vector Machine (SVM) is discussed in this thesis with the purpose of efficiently diagnosing failure. The SVM utilizes the kernel method to transform input data from a lower dimensional space to a higher dimensional space. In the higher dimensional space, the hitherto linearly non separable patterns can be linearly separated, without compromising the computational cost. This facilitates failure diagnostics as in the higher dimensional space, the existing failure or incipient failure is more identifiable. The SVM uses the maximal margin method to overcome the “overfitting” problem. This problem makes the model fit special data sets. The maximal margin method also makes it suitable for solving small sample size problems. In this thesis, the SVM is compared with another well known technique, the Artificial Neural Network (ANN). In the comparative study, the SVM performs better than the ANN. However, as the performance of the SVM critically depends on the parameters of the kernel function, this thesis proposes using an Ant Colony Optimization (ACO) method to obtain the optimal parameters. The ACO optimized SVM is applied to diagnose the electric motor in a railway system. The Support Vector Regression (SVR) is an extension of the SVM. In this thesis, SVR is combined with a time-series to forecast reliability. Finally, to improve the SVM performance, the thesis proposes a multiple kernel SVM. The SVM is an excellent pattern recognition technique. However, to obtain an accurate diagnostics performance, one has to extract the appropriate features. This thesis discusses the features extracted from the time domain and uses the SVM to diagnose failure for a bearing. Another case in this thesis is presented, namely failure diagnostics for an electric motor installed in a railway’s crossing and switching system; in this case, the features are extracted from the power consumption signal. In short, the thesis discuses the use of the SVM in failure diagnostics. Theoretically, the SVM is an excellent classifier or regressor possessing a solid theoretical foundation. Practically, the SVM performs well in failure diagnostics, as shown in the cases presented. Finally, as failure diagnostics critically relies on feature extraction, this thesis considers feature extraction from the time domain.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2011. , 152 p.
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Research subject
Operation and Maintenance
URN: urn:nbn:se:ltu:diva-17188Local ID: 21cf78ed-ecca-4026-a825-a033b623ae2dISBN: 978-91-7439-366-8OAI: diva2:990187
Godkänd; 2011; 20111121 (yuafuq); DISPUTATION Ämnesområde: Drift och underhållsteknik/Operation and Maintenance Opponent: Professor Thomas Lindblad, Institutionen för fysik, Kungliga Tekniska Högskolan, Stockholm Ordförande: Professor Uday Kumar, Institutionen för samhällsbyggnad och naturresurser, Luleå tekniska universitet Tid: Tisdag den 20 december 2011, kl 09.00 Plats: F1031, Luleå tekniska universitetAvailable from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(5888 kB)0 downloads
File information
File name FULLTEXT01.pdfFile size 5888 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Fuqing, Yuan
By organisation
Operation, Maintenance and Acoustics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

ReferencesLink to record
Permanent link

Direct link