Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Some new results concerning Schur multipliers and duality results between Bergman-Schatten and little Bloch spaces
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
2009 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This Licentiate thesis consists of an introduction and three papers, which deal with some spaces of infinite matrices. In the introduction we give an overview of the area that serves as a frame for the rest of the thesis.In Paper 1 we introduce the space $B_w(\ell^2)$ of linear (unbounded) operators on $\ell^2$ which map decreasing sequences from $\ell^2$ into sequences from $\ell^2$ and we find some classes of operators belonging either to $B_w(\ell^2)$ or to the space of all Schur multipliers on $B_w(\ell^2)$.In Paper 2 we further continue the study of the space $B_w(\ell^p)$ in the range $1 <\infty$. In particular, we characterize the upper triangular positive matrices from $B_w(\ell^p)$.In Paper 3 we prove a new characterization of the Bergman-Schatten spaces $L_a^p(D,\ell^2)$, the space of all upper triangular matrices such that $\|A(\cdot)\|_{L^p(D,\ell^2)}<\infty$, where \[\|A(r)\|_{L^p(D,\ell^2)}=\left(2\int_0^1\|A(r)\|^p_{C_p}rdr\right)^\frac{1}{p}. \]This characterization is similar to that for the classical Bergman spaces. We also prove a duality between the little Bloch space and the Bergman-Schatten classes in the case of infinite matrices.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2009. , 9 p.
Series
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:ltu:diva-17166Local ID: 1fe59bb0-3003-11de-bd0f-000ea68e967bISBN: 978-91-86233-38-9 (print)OAI: oai:DiVA.org:ltu-17166DiVA: diva2:990165
Note
Godkänd; 2009; 20090423 (livmar); LICENTIATSEMINARIUM Ämnesområde: Matematik/Mathematics Examinator: Professor Lars-Erik Persson, Luleå tekniska universitet Tid: Tisdag den 2 juni 2009 kl 10.15 Plats: D 2214, Luleå tekniska universitetAvailable from: 2016-09-29 Created: 2016-09-29 Last updated: 2017-11-24Bibliographically approved

Open Access in DiVA

fulltext(516 kB)15 downloads
File information
File name FULLTEXT01.pdfFile size 516 kBChecksum SHA-512
0a94933ec8c085432ffb2eba9deb9f0dcd2e7b672df500009df919feece991284e41ef386373929094911adf592258b363d22331baac0bdd248e7e0b1d884a4e
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Marcoci, Liviu-Gabriel
By organisation
Mathematical Science
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
Total: 15 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 26 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf