Change search
ReferencesLink to record
Permanent link

Direct link
Methodologies and Practical Tools for Realistic Large Scale Simulations of Wireless Sensor Networks
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Computer Science.
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Wireless Sensor Networks (WSNs) have evolved into large and complex systems and are now one of the major technologies used in Cyber-Physical Systems (CPS) and the Internet of Things (IoT).Extensive research on WSNs has led to the development of diverse solutions for all layers of software architecture, including protocol stacks for communications. For example, more than one hundred distinct medium access control protocols and fifty routing and transport-level solutions have been proposed. This multitude of solutions is due to the limited computational power and restrictions on energy consumption that must be accounted for when designing typical WSN systems. The performance of a given high-level application task may depend strongly on the specific composition of the system's protocol stack, the run-time specifics of the underlying operating system, and the potential non-deterministic behavior of the devices used in the network. This makes it very difficult to identify the optimal software architecture for any particular situation. In many cases, software components must be developed specifically for each combination of task, environment and hardware. It is therefore challenging to develop, test, and validate even small WSN applications and this process can easily consume significant resources.This dissertation investigates various approaches for making the testing and validation of large scale WSN systems more efficient. The theoretical contribution presented is a method that enables the accurate reproduction of phenomena occurring inside real sensor node hardware and software at all layers of abstraction. This will expedite the design, development, and testing of WSN functionality.The main technical contribution is a prototype of a simulation framework named Symphony, which implements the proposed method. The framework's key feature is its ability to perform ultra-large scale holistic experiments on WSN functionality with millions of nodes using configurable levels of abstraction. The behavior observable using Symphony is very similar to the run-time behavior that developers would observe in reality. This is achieved via the virtualization of real-world operating systems and by using measurement-based hardware emulation and software component models.The impact of this dissertation is twofold. First, the proposed methodology and associated development framework will facilitate the education and training of specialists in the future IoT. Second, from a more long-term perspective, the thesis paves the way to solutions for several critical problems that have been highlighted in many strategic research agendas concerning the development of future industrial systems, including the streamlined validation of equipment and service interoperability across different vendors and application domains, and the rapid integrated design of future large scale CPS.

Place, publisher, year, edition, pages
Luleå tekniska universitet, 2014. , 228 p.
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Research subject
Dependable Communication and Computation Systems
URN: urn:nbn:se:ltu:diva-17052Local ID: 15249811-095a-44bc-8d94-228cf838be3cISBN: 978-91-7439-827-4ISBN: 978-91-7439-828-1 (PDF)OAI: diva2:990046
Godkänd; 2014; 20131218 (lauril); Nedanstående person kommer att disputera för avläggande av teknologie doktorsexamen. Namn: Laurynas Riliskis Ämne: Datorkommunikation/Computer Networking Avhandling: Methodologies and Practical Tools for Realistic Large Scale Simulations of Wireless Sensor Networks Opponent: Associate Professor Philip Levis, Computer Science and Electrical Engineering Departments, Stanford University, USA. Ordförande: Biträdande professor Evgeny Osipov, Avd för datavetenskap, Institutionen för system- och rymdteknik, Luleå tekniska universitet. Tid: Måndag den 10 februari 2014, kl 10.00 Plats: A109, Luleå tekniska universitetAvailable from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(8988 kB)0 downloads
File information
File name FULLTEXT01.pdfFile size 8988 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Riliskis, Laurynas
By organisation
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

ReferencesLink to record
Permanent link

Direct link