Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Weighted integral inequalities with the geometric mean operator
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
Computing Centre, Russian Academy of Sciences, Far-Eastern Branch, Khabarovsk.
2002 (English)In: Journal of inequalities and applications (Print), ISSN 1025-5834, E-ISSN 1029-242X, Vol. 7, no 5, 727-746 p.Article in journal (Refereed) Published
Abstract [en]

The geometric mean operator is defined by Gf(x) = exp(1/x∫0x logf(t)dt). A precise two-sided estimate of the norm ||G|| = supf≠0 ||Gf||Luq/||f||Lvq for 0 < p, q ≤ ∞ is given and some applications and extensions are pointed out

Place, publisher, year, edition, pages
2002. Vol. 7, no 5, 727-746 p.
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:ltu:diva-16107DOI: 10.1155/S1025583402000371Local ID: faf80690-aab6-11db-aeba-000ea68e967bOAI: oai:DiVA.org:ltu-16107DiVA: diva2:989083
Note
Validerad; 2002; 20061026 (evan)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2017-11-24Bibliographically approved

Open Access in DiVA

fulltext(784 kB)21 downloads
File information
File name FULLTEXT01.pdfFile size 784 kBChecksum SHA-512
00dcfc223fffa843c8a20b0582013bb0f396f1c8d624f0e3ff5f7f333eba5b1f95056960aa1d61b2a0eb23bcc9cd81dcbf4c0336a6e2b4966a53bb42d1270ba9
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Persson, Lars-Erik
By organisation
Mathematical Science
In the same journal
Journal of inequalities and applications (Print)
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
Total: 21 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 39 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf