Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Microwave hyperspectral measurements for temperature and humidity atmospheric profiling from satellite: The clear-sky case
Estellus, Paris.
Estellus, Paris.
Cologne university.
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.ORCID iD: 0000-0002-4478-2185
Show others and affiliations
2015 (English)In: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 120, no 21, 11334-11351 p.Article in journal (Refereed) Published
Abstract [en]

This study investigates the benefits of a satellite HYper-spectral Microwave Sensor (HYMS) for the retrieval of atmospheric temperature and humidity profiles, in the context of Numerical Weather Prediction (NWP). In the infrared, hyper-spectral instruments have already improved the accuracy of NWP forecasts. Microwave instruments so far only provide observations for a limited number of carefully selected channels. An information content analysis is conducted here to assess the impact of hyper-spectral microwave measurements on the retrieval of temperature and water vapor profiles under clear-sky conditions. It uses radiative transfer simulations over a large variety of atmospheric situations. It accounts for realistic observation (instrument and radiative transfer) noise and for a priori information assumptions compatible with NWP practices. The estimated retrieval performance of the HYMS instrument is compared to those of the microwave instruments to be deployed on board the future generation of European operational meteorological satellites (MetOp-SG). The results confirm the positive impact of a HYMS instrument on the atmospheric profiling capabilities compared to MetOp-SG. Temperature retrieval uncertainty, compared to a priori information, is reduced by 2 to 10%, depending on the atmospheric height, and improvement rates are much higher than what will be obtained with MetOp-SG. For humidity sounding these improvements can reach 30%, a significant benefit as compared to MetOp-SG results especially below 250 hPa. The results are not very sensitive to the instrument noise, under our assumptions. The main impact provided by the hyper-spectral information originates from the higher resolution in the O2 band around 60 GHz. The results are presented over ocean at nadir but similar conclusions are obtained for other incidence angles and over land

Place, publisher, year, edition, pages
2015. Vol. 120, no 21, 11334-11351 p.
National Category
Aerospace Engineering
Research subject
Atmospheric science
Identifiers
URN: urn:nbn:se:ltu:diva-12795DOI: 10.1002/2015JD023331Local ID: bf3fe476-4492-4d63-8f25-4af452142759OAI: oai:DiVA.org:ltu-12795DiVA: diva2:985746
Note
Validerad; 2015; Nivå 2; 20151028 (ninhul)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2017-11-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Milz, Mathias
By organisation
Space Technology
In the same journal
Journal of Geophysical Research - Atmospheres
Aerospace Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 168 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf