Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cesaro function spaces fail the fixed point property
LuleƄ University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.ORCID iD: 0000-0002-9584-4083
2008 (English)In: Proceedings of the American Mathematical Society, ISSN 0002-9939, E-ISSN 1088-6826, Vol. 136, no 12, p. 4289-4294Article in journal (Refereed) Published
Abstract [en]

The Cesaro sequence spaces ces(p), 1 < p < infinity, are reflexive but they have the fixed point property. In this paper we prove that in contrast to these sequence spaces the corresponding Cesaro function spaces Ces(p) on both [0, 1] and [0, infinity) for 1 < p < infinity are not reflexive and they fail to have the fixed point property.

Place, publisher, year, edition, pages
2008. Vol. 136, no 12, p. 4289-4294
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:ltu:diva-10410Local ID: 93800e70-8658-11dd-8275-000ea68e967bOAI: oai:DiVA.org:ltu-10410DiVA, id: diva2:983355
Note
Validerad; 2008; 20080919 (ysko)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2017-11-24Bibliographically approved

Open Access in DiVA

fulltext(122 kB)38 downloads
File information
File name FULLTEXT01.pdfFile size 122 kBChecksum SHA-512
ae168bbb6a5e54cf1f34c4b2d53f61dc6c633057aa580c317f09220b73f94f1764be57bcb6f334585d208b8d397d604ab657530487c20ad527d53090b4f81809
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Astashkin, SergeyMaligranda, Lech
By organisation
Mathematical Science
In the same journal
Proceedings of the American Mathematical Society
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
Total: 38 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 25 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf