Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On Clarkson's inequality in the real case
LuleƄ University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.ORCID iD: 0000-0002-9584-4083
2007 (English)In: Mathematische Nachrichten, ISSN 0025-584X, E-ISSN 1522-2616, Vol. 280, no 12, 1363-1375 p.Article in journal (Refereed) Published
Abstract [en]

The best constant in a generalized complex Clarkson inequality is Cp,q () = max {21-1/p , 21/q , 21/q -1/p +1/2} which differs moderately from the best constant in the real case Cp,q () = max {21-1/p , 21/q ,Bp,q }, where . For 1 < q < 2 < p < the constant Cp,q () is equal to Bp,q and these numbers are difficult to calculate in general. As applications of the generalized Clarkson inequalities the (p, q)-Clarkson inequalities in Lebesgue spaces, in mixed norm spaces and in normed spaces are presented.

Place, publisher, year, edition, pages
2007. Vol. 280, no 12, 1363-1375 p.
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:ltu:diva-8080DOI: 10.1002/mana.200610552Local ID: 684edf50-770a-11dc-80da-000ea68e967bOAI: oai:DiVA.org:ltu-8080DiVA: diva2:980970
Note
Validerad; 2007; 20071010 (evan)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2017-11-24Bibliographically approved

Open Access in DiVA

fulltext(187 kB)