Change search
ReferencesLink to record
Permanent link

Direct link
The popular impact of Gödel's incompleteness theorem
Luleå University of Technology.
2006 (English)In: Notices of the American Mathematical Society, ISSN 0002-9920, E-ISSN 1088-9477, Vol. 53, no 4, 440-443 p.Article in journal (Refereed) Published
Abstract [en]

The author, whose untimely passing in April 2006 was a great loss to the logic community, used this short paper primarily to dispel a few popular and not so popular misinterpretations of Gödel's incompleteness theorems. The most obvious misconceptions arise in areas having no direct connection with mathematics. But even within scientific circles, it is useful for the author to have pointed out that no unsolved problem in "traditional mathematics" has been shown to be undecidable via Gödel's first incompleteness theorem. (The Paris-Harrington undecidable problem does have to do with standard mathematical concepts, but it was not obtained from Gödel's result.) The author also makes illuminating remarks about Gödel's second incompleteness theorem concerning unprovability of the consistency of sufficiently strong mathematical theories. For example, the role of consistency proofs in justifying mathematical reasoning has been overemphasized. Moreover, there are informal `proofs' on the same level as ordinary mathematical argumentation that may convince most mathematicians of the consistency of, say, Peano arithmetic. For a more extensive treatment of all of these matters, the author refers the reader to his recent book Gödel's theorem, A K Peters, Wellesley, MA, 2005

Place, publisher, year, edition, pages
2006. Vol. 53, no 4, 440-443 p.
URN: urn:nbn:se:ltu:diva-5931Local ID: 41f05920-d916-11db-a1bf-000ea68e967bOAI: diva2:978807
Validerad; 2006; 20070116 (kani)Available from: 2016-09-29 Created: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(49 kB)1 downloads
File information
File name FULLTEXT01.pdfFile size 49 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links
In the same journal
Notices of the American Mathematical Society

Search outside of DiVA

GoogleGoogle Scholar
Total: 1 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 1 hits
ReferencesLink to record
Permanent link

Direct link