Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Chebyshev inequality in function spaces
Department of Mathematics, McMaster University.
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.ORCID iD: 0000-0002-9584-4083
1991 (English)In: Real Analysis Exchange, ISSN 0147-1937, E-ISSN 1930-1219, Vol. 17, no 1, 211-247 p.Article in journal (Refereed) Published
Abstract [en]

In this interesting paper, the authors study the classical Chebyshev inequality and prove new variants, generalizations and abstractions. Among these are Chebyshev's inequality for strongly increasing functions, positive convex and concave functions, generalizations of Ky Fan's inequality and extensions involving Chebyshev's inequality in Banach function spaces and symmetric spaces.

Place, publisher, year, edition, pages
1991. Vol. 17, no 1, 211-247 p.
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:ltu:diva-4032Local ID: 1e3c9560-b699-11db-abff-000ea68e967bOAI: oai:DiVA.org:ltu-4032DiVA: diva2:976894
Note
Godkänd; 1991; 20070207 (evan)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2017-11-24Bibliographically approved

Open Access in DiVA

fulltext(1107 kB)55 downloads
File information
File name FULLTEXT01.pdfFile size 1107 kBChecksum SHA-512
8cf81b09e2134047aa0889f6794b007838d4e3116776ce1623595b9d154c1d01cf16de9f537eed43fdfc735106a7c54749bd91e917b99e00d19df32a4290cf6a
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Maligranda, Lech
By organisation
Mathematical Science
In the same journal
Real Analysis Exchange
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
Total: 55 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 106 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf