Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Structure of Cesaro function spaces
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.ORCID iD: 0000-0002-9584-4083
2009 (English)In: Indagationes mathematicae, ISSN 0019-3577, E-ISSN 1872-6100, Vol. 20, no 3, p. 329-379Article in journal (Refereed) Published
Abstract [en]

The structure of the Cesàro function spaces Cesp on both [0,1] and [0, ∞) for 1 < p ≤ ∞ is investigated. We find their dual spaces, which equivalent norms have different description on [0, 1] and [0, ∞).The spaces Cesp for 1 < p < ∞ are not reflexive but strictly convex. They are not isomorphic to any Lq space with 1 ≤ q ≤ ∞. They have "near zero" complemented subspaces isomorphic to lp and "in the middle" contain an asymptotically isometric copy of l1 and also a copy of L1[0, 1]. They do not have Dunford-Pettis property but they do have the weak Banach-Saks property. Cesàro function spaces on [0, 1] and [0, ∞) are isomorphic for 1 < p ≤ ∞. Moreover, we give characterizations in terms of p and q when Cesp[0, 1] contains an isomorphic copy of lq.

Place, publisher, year, edition, pages
2009. Vol. 20, no 3, p. 329-379
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:ltu:diva-3377DOI: 10.1016/S0019-3577(10)00002-9Local ID: 132d5c00-5208-11df-a0f4-000ea68e967bOAI: oai:DiVA.org:ltu-3377DiVA, id: diva2:976235
Note
Validerad; 2010; 20100427 (ysko)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2017-11-24Bibliographically approved

Open Access in DiVA

fulltext(496 kB)37 downloads
File information
File name FULLTEXT01.pdfFile size 496 kBChecksum SHA-512
3caca4139c2b2c51658f24e2ec639bce2b1bdea3c376857cd4d8284d8bd134f2728af11c9d35a3c82fdcb355560ac13e0d27f841129fe5ddd950d953d78225a8
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Astashkin, SergeyMaligranda, Lech
By organisation
Mathematical Science
In the same journal
Indagationes mathematicae
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
Total: 37 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf