Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Serum Amyloid P Component Ameliorates Neurological Damage Caused by Expressing a Lysozyme Variant in the Central Nervous System of Drosophila melanogaster
Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
2016 (English)In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 11, no 7, e0159294- p.Article in journal (Refereed) Published
Abstract [en]

Lysozyme amyloidosis is a hereditary disease in which mutations in the gene coding for lysozyme leads to misfolding and consequently accumulation of amyloid material. To improve understanding of the processes involved we expressed human wild type (WT) lysozyme and the disease-associated variant F57I in the central nervous system (CNS) of a Drosophila melanogaster model of lysozyme amyloidosis, with and without co-expression of serum amyloid p component (SAP). SAP is known to be a universal constituent of amyloid deposits and to associate with lysozyme fibrils. There are clear indications that SAP may play an important role in lysozyme amyloidosis, which requires further elucidation. We found that flies expressing the amyloidogenic variant F57I in the CNS have a shorter lifespan than flies expressing WT lysozyme. We also identified apoptotic cells in the brains of F57I flies demonstrating that the flies neurological functions are impaired when F57I is expressed in the nerve cells. However, co-expression of SAP in the CNS prevented cell death and restored the F57I flies lifespan. Thus, SAP has the apparent ability to protect nerve cells from damage caused by F57I. Furthermore, it was found that co-expression of SAP prevented accumulation of insoluble forms of lysozyme in both WT- and F57I-expressing flies. Our findings suggest that the F57I mutation affects the aggregation process of lysozyme resulting in the formation of cytotoxic species and that SAP is able to prevent cell death in the F57I flies by preventing accumulation of toxic F57I structures.

Place, publisher, year, edition, pages
PUBLIC LIBRARY SCIENCE , 2016. Vol. 11, no 7, e0159294- p.
National Category
Developmental Biology
Identifiers
URN: urn:nbn:se:liu:diva-131183DOI: 10.1371/journal.pone.0159294ISI: 000380169300043PubMedID: 27428539OAI: oai:DiVA.org:liu-131183DiVA: diva2:971958
Note

Funding Agencies|Swedish Research Council; Soderberg foundation [M26/11]; Linkoping University Neurobiology Center

Available from: 2016-09-19 Created: 2016-09-12 Last updated: 2017-11-21
In thesis
1. Amyloid-β and lysozyme proteotoxicity in Drosophila: Beneficial effects of lysozyme and serum amyloid P component in models of Alzheimer’s disease and lysozyme amyloidosis
Open this publication in new window or tab >>Amyloid-β and lysozyme proteotoxicity in Drosophila: Beneficial effects of lysozyme and serum amyloid P component in models of Alzheimer’s disease and lysozyme amyloidosis
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In the work presented this thesis, two different conditions that are classified as protein misfolding diseases: Alzheimer's disease and lysozyme amyloidosis and proteins that could have a beneficial effect in these diseases, have been studied using Drosophila melanogaster, commonly known as the fruit fly. The fruit fly has been used for over 100 years to study and better understand fundamental biological processes. Although the fruit fly, unlike humans, is an invertebrate, many of its central biological mechanisms are very similar to ours. The first transgenic flies were designed in the early 1980s, and since then, the fruit fly has been one of the most widely used model organisms in studies on the effects of over-expressed human proteins in a biological system; one can regard the fly as a living, biological test tube. For  most proteins, it is necessary that they fold into a three-dimensional structure to function properly. But sometimes the folding goes wrong; this may be due to mutations that make the protein unstable and subject to misfolding. A misfolded protein molecule can then aggregate with other misfolded proteins. In Alzheimer's disease, which is the most common form of dementia, protein aggregates are present in the brains of patients. These aggregates are composed of the amyloid-β (Aβ) peptide, a small peptide of around 42 amino acids which is cleaved from the larger, membrane-bound, protein AβPP by two different enzymes, BACE1 and γ-secretase. In the first part of this thesis, two different fly models for Alzheimer’s disease were used: the Aβ fly model, which directly expresses the Aβ peptide, and the AβPP-BACE1 fly model, in which all the components necessary to produce the Aβ peptide in the fly are expressed in the fly central nervous system (CNS). The two different fly models were compared and the results show that a significantly smaller amount of the Aβ peptide is needed to achieve the same, or an even greater, toxic effect in the AβPP-BACE1 model compared to the Aβ model. In the second part of the thesis, these two fly models for Alzheimer’s disease were again used, but now to investigate whether lysozyme, a protein involved in our innate immune system, can counteract the toxic effect of Aβ generated in the fly models. And indeed, lysozyme is able to save the flies from Aβ-induced toxicity. Aβ and lysozyme were found to interact with each other in vivo. The second misfolding disease studied in this thesis is lysozyme amyloidosis. It is a rare, dominantly inherited amyloid disease in which mutant variants of lysozyme give rise to aggregates, weighing up to several kilograms, that accumulate around the kidneys and liver, eventually leading to organ failure. In the third part of this thesis, a fly model for lysozyme amyloidosis was used to study the effect of co-expressing the serum amyloid P component (SAP), a protein that is part of all protein aggregates found within this disease class. SAP is able to rescue the toxicity induced by expressing the mutant variant of lysozyme, F57I, in the fly's CNS. To further investigate how SAP was able to do this, double-expressing lysozyme flies, which exhibit stronger disease phenotypes than those of the single-expressing lysozyme flies previously studied, were used in the fourth part of this thesis. SAP was observed to reduce F57I toxicity and promote F57I to form aggregates with more distinct amyloid characteristics. In conclusion, the work included in this thesis demonstrates that: i) Aβ generated from AβPP processing in the fly CNS results in higher proteotoxicity compared with direct expression of Aβ from the transgene, ii) lysozyme can prevent Aβ proteotoxicity in Drosophila and could thus be a potential therapeutic molecule to treat Alzheimer’s disease and iii) in a Drosophila model of lysozyme amyloidosis, SAP can prevent toxicity from the disease-associated lysozyme variant F57I and promote formation of aggregated lysozyme morphotypes with amyloid properties; this is important to take into account when a reduced level of SAP is considered as a treatment strategy for lysozyme amyloidosis.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2017. 91 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1861
National Category
Biochemistry and Molecular Biology Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy) Biophysics Medicinal Chemistry
Identifiers
urn:nbn:se:liu:diva-137452 (URN)10.3384/diss.diva-137452 (DOI)9789176855065 (ISBN)
Public defence
2017-06-17, Planck, Fysikhuset, Campus Valla, Linköping, 10:15 (Swedish)
Opponent
Supervisors
Available from: 2017-05-16 Created: 2017-05-16 Last updated: 2017-05-17Bibliographically approved

Open Access in DiVA

fulltext(2662 kB)25 downloads
File information
File name FULLTEXT02.pdfFile size 2662 kBChecksum SHA-512
ce55478a9e5b94234e32e6cdaa34da0e8310ad05724e6ea8994d5d45533f5555127f19cdcdbc42acd25fc67b5f8b86cb91df8aa62817958ab638ff670f16ec64
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Helmfors, LindaBergkvist, LizaBrorsson, Ann-Christin
By organisation
ChemistryThe Institute of TechnologyFaculty of Science & Engineering
In the same journal
PLoS ONE
Developmental Biology

Search outside of DiVA

GoogleGoogle Scholar
Total: 25 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 110 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf