Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Stochastic Modeling of Electricity Prices and the Impact on Balancing Power Investments
KTH, School of Industrial Engineering and Management (ITM), Industrial Economics and Management (Dept.).
KTH, School of Industrial Engineering and Management (ITM), Industrial Economics and Management (Dept.).
2016 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Stokastisk modellering av elpriser och effekten på investeringar i balanskraft (Swedish)
Abstract [en]

Introducing more intermittent renewable energy sources in the energy system makes the role of balancing power more important. Furthermore, an increased infeed from intermittent renewable energy sources also has the effect of creating lower and more volatile electricity prices. Hence, investing in balancing power is prone to high risks with respect to expected profits, which is why a good representation of electricity prices is vital in order to motivate future investments. We propose a stochastic multi-factor model to be used for simulating the long-run dynamics of electricity prices as input to investment valuation of power generation assets. In particular, the proposed model is used to assess the impact of electricity price dynamics on investment decisions with respect to balancing power generation, where a combined heat and power plant is studied in detail. Since the main goal of the framework is to create a long-term representation of electricity prices so that the distributional characteristics of electricity prices are maintained, commonly cited as seasonality, mean reversion and spikes, the model is evaluated in terms of yearly duration which describes the distribution of electricity prices over time. The core aspects of the framework are derived from the mean-reverting Pilipovic model of commodity prices, but where we extend the assumptions in a multi-factor framework by adding a functional link to the supply- and demand for power as well as outdoor temperature. On average, using the proposed model as a way to represent future prices yields a maximum 9 percent overand underprediction of duration respectively, a result far better than those obtained by simpler models such as a seasonal profile or mean estimates which do not incorporate the full characteristics of electricity prices. Using the different aspects of the model, we show that variations of electricity prices have a large impact on the investment decision with respect to balancing power. The realized value of the flexibility to produce electricity in a combined heat and power plant is calculated, which yields a valuation close to historical realized values. Compared with simpler models, this is a significant improvement. Finally, we show that by including characteristics such as non-constant volatility and spiky behavior in investment decisions, the expected value of balancing power generators, such as combined heat and power plants, increases.

Abstract [sv]

I takt med att fler intermittenta förnyelsebara energikällor tillför el i dagens energisystem, blir också balanskraftens roll i dessa system allt viktigare. Vidare så har en ökning av andelen intermittenta förnyelsebara energikällor även effekten att de bidrar till lägre men också mer volatila elpriser. Därmed är även investeringar i balanskraft kopplade till stora risker med avseende på förväntade vinster, vilket gör att en god representation av elpriser är central vid investeringsbeslut. Vi föreslår en stokastisk flerfaktormodell för att simulera den långsiktiga dynamiken i elpriser som bas för värdering av generatortillgångar. Mer specifikt används modellen till att utvärdera effekten av elprisers dynamik på investeringsbeslut med avseende på balanskraft, där ett kraftvärmeverk studeras i detalj. Eftersom huvudmålet med ramverket är att skapa en långsiktig representation av elpriser så att deras fördelningsmässiga karakteristika bevaras, vilket i litteraturen citeras som regression mot medelvärde, säsongsvariationer, hög volatilitet och spikar, så utvärderas modellen i termer av årlig prisvaraktighet som beskriver fördelningen av elpriser över tid. Kärnan i ramverket utgår från Pilipovic-modellen av råvarupriser, men där vi utvecklar antaganden i ett flerfaktorramverk genom att lägga till en länkfunktion till tillgång- och efterfrågan på el samt utomhustemperatur. Vid användande av modellen som ett sätt att representera framtida priser, fås en maximal över- och underprediktion av prisvaraktighet om 9 procent, ett resultat som är bättre än det som ges av enklare modellering såsom säsongsprofiler eller enkla medelvärdesestimat som inte tar hänsyn till elprisernas fulla karakteristika. Till sist visar vi med modellens olika komponenter att variationer i elpriser, och därmed antaganden som används i långsiktig modellering, har stor betydelse med avseende på investeringsbeslut i balanskraft. Det realiserade värdet av flexibiliteten att producera el för ett kraftvärmeverk beräknas, vilket ger en värdering nära faktiska realiserade värden baserade på historiska priser och som enklare modeller inte kan konkurrera med. Slutligen visar detta också att inkluderandet av icke-konstant volatilitet och spikkarakteristika i investeringsbeslut ger ett högre förväntat värde av tillgångar som kan producera balanskraft, såsom kraftvärmeverk.

Place, publisher, year, edition, pages
2016. , 110 p.
Series
Examensarbete INDEK, 2016:61
Keyword [en]
Energy investment, investment valuation, renewable energy production, electricity price modeling, long-term, combined heat and power, CHP, balancing power, intermittent renewable energy modeling, Pilipovic model, multi-factor model, sinusoidal regression, Ornstein-Uhlenbeck estimation, electricity price duration prediction, Nord Pool, Sweden electricity market, future energy systems, phasing out nuclear power, energy policy.
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:kth:diva-192111OAI: oai:DiVA.org:kth-192111DiVA: diva2:971293
External cooperation
Fortum Värme AB
Subject / course
Industrial Economics and Management
Educational program
Master of Science in Engineering - Industrial Engineering and Management
Supervisors
Examiners
Available from: 2016-10-06 Created: 2016-09-06 Last updated: 2016-10-06Bibliographically approved

Open Access in DiVA

fulltext(10084 kB)146 downloads
File information
File name FULLTEXT01.pdfFile size 10084 kBChecksum SHA-512
62a1236f294eaf17b75457d57afdf003ee6a1787e2910bc924dc37eaad4ee2eb510dcc8359d4beb2c740dd8bb4fab50823c2f0f1eddfe60f33456f8f9e2759ae
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Ruthberg, RichardWogenius, Sebastian
By organisation
Industrial Economics and Management (Dept.)
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
Total: 146 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 718 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf