Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Design, Analysis and Prototyping of Spectrally Precoded OFDM
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering.ORCID iD: 0000-0002-9225-8150
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Despite shifting towards mm-wave bands, the sub 6-GHz band will continue tobe a fundamental spectral band in 5G. Yet, the severe crowdedness of this bandmakes a well constrained spectrum one of the critical 5G requirements. A wellconstrained spectrum means that the communications regimes should dwell politelywithin their dedicated spectral bands and not interfere with other systems workingon neighboring bands. Consequently, communications community seeks convenientmodulation schemes.Accordingly, high Out Of Band (OOB) emission phenomenon in Orthogonal Fre-quency Division Multiplexing (OFDM) is unfavorable for some regimes operating in5G. Therefore, to legitimize OFDM with all 5G regimes, we need to suppress OFDMOOB emission.Since the discontinuous nature of the OFDM signal is the main reason for the highOOB emission, one solution is to render the discontinuous OFDM signal continuous.Two factors control this discontinuity: the physical shape of the modulated signaland the correlation property of the data symbols that modulate the OFDM signal.While most of the traditional approaches focus on reshaping the OFDM signalto render it continuous, in this work we give our attention to the spectral precod-ing approaches. These approaches manipulate the correlation property of the datasymbols to control the high OOB emission in OFDM.On the other hand, tweaking the correlation property of the modulating datasymbols will violate their orthogonality. This violation will yield in-band interfer-ence within the OFDM signal which would degrade the bit error performance of thereceived data.The thesis explains the spectral precoding techniques from conceptual and math-ematical point of view. We discuss the OOB emission suppression capability of theprecoding techniques and study their drawbacks and limitations. We provide ana-lytical trade o study between precoding approaches and classical OFDM treatmentapproaches at the level of OOB emission suppression and in-band interference. Weshow that the in-band interference in precoding techniques is independent on thecommunications channel behavior contrary to that of classical techniques. More-over, we dene the optimal precoder that minimizes the in-band interference. Con-sequently, we design a novel practical precoder that approaches the performanceof the optimal precoder. Furthermore, we analyze the complexity of the precodingapproaches and study the implementation computational requirements.Finally, we test the real time performance of these precoding techniques usingSoftware Designed Radio (SDR) Universal Software Radio Peripherals (USRPs). Wespotlight the hardware limitations and show that despite these limitations, the spec-tral precoder is able to suppress the OOB emissions by tens of decibels. We check the reliability of spectral precoding in practical over air communications systems bysetting up the rst spectral precoding proof of concept prototype. The prototypeproves that precoded OFDM systems cause less OOB interference on neighboringcommunications systems.

Place, publisher, year, edition, pages
Luleå: Luleå University of Technology, 2016.
Series
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
National Category
Signal Processing
Research subject
Signal Processing
Identifiers
URN: urn:nbn:se:ltu:diva-139ISBN: 978-91-7583-680-5 (print)ISBN: 978-91-7583-681-2 (electronic)OAI: oai:DiVA.org:ltu-139DiVA: diva2:971178
Presentation
2016-10-20, A3024, Luleå tekniska universitet, Luleå, 13:00
Opponent
Supervisors
Available from: 2016-09-15 Created: 2016-09-15 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

fulltext(7045 kB)396 downloads
File information
File name FULLTEXT01.pdfFile size 7045 kBChecksum SHA-512
b3df368c74ae8d3dba56980f3820433e0d44771eddfd2b2b9a774f70b6d785a80a3361a06633fd9c6faea66d1c140a03535bd1a70cfc018b3799ba0e88d8d3ba
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Mohamad, Medhat
By organisation
Department of Computer Science, Electrical and Space Engineering
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar
Total: 396 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 483 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf