Change search
ReferencesLink to record
Permanent link

Direct link
Real-time in situ multi-parameter TDLAS sensing in the reactor core of an entrained-flow biomass gasifier
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
Show others and affiliations
2017 (English)In: Proceedings of the Combustion Institute, ISSN 1540-7489, E-ISSN 1873-2704, Vol. 36, no 3, 4541-4548 p.Article in journal (Refereed) Published
Abstract [en]

Tunable diode laser absorption spectroscopy (TDLAS) was used to measure several important process parameters at two different locations inside the reactor of an atmospheric, air-blown 0.1 MWth biomass gasifier. Direct TDLAS at 2298 nm was employed for carbon monoxide (CO) and water vapor (H2O), calibration-free scanned wavelength modulation spectroscopy at 1398 nm for H2O and gas temperature, and direct TDLAS at 770 nm for gaseous elemental potassium, K(g), under optically thick conditions. These constitute the first in situ measurements of K(g) and temperature in a reactor core and in biomass gasification, respectively. In addition, soot volume fractions were determined at all TDLAS wavelengths, and employing fixed-wavelength laser extinction at 639 nm. Issues concerning the determination of the actual optical path length, as well as temperature and species non-uniformities along the line-of-sight are addressed. During a 2-day measurement campaign, peat and stem wood powder were first combusted at an air equivalence ratio (lambda) of 1.2 and then gasified at lambdas of 0.7, 0.6, 0.5, 0.4 and 0.35. Compared to uncorrected thermocouple measurements in the gas stream, actual average temperatures in the reactor core were significantly higher. The CO concentrations at the lower optical access port were comparable to those obtained by gas chromatography at the exhaust. In gasification mode, similar H2O values were obtained by the two different TDLAS instruments. The measured K(g) concentrations were compared to equilibrium calculations. Overall, the reaction time was found to be faster for peat than for stem wood. All sensors showed good performance even in the presence of high soot concentrations, and real-time detection was useful in resolving fast, transient behaviors, such as changes in stoichiometry. Practical implications of in-situ TDLAS monitoring on the understanding and control of gasification processes are discussed.

Place, publisher, year, edition, pages
2017. Vol. 36, no 3, 4541-4548 p.
Keyword [en]
Tunable diode laser absorption spectroscopy, Biomass gasification, Gas temperature, Potassium, Carbon monoxide
National Category
Chemical Process Engineering Atom and Molecular Physics and Optics Energy Systems Bioenergy Energy Engineering
URN: urn:nbn:se:umu:diva-124706DOI: 10.1016/j.proci.2016.07.011OAI: diva2:954411
Available from: 2016-08-22 Created: 2016-08-22 Last updated: 2017-02-07Bibliographically approved

Open Access in DiVA

fulltext(1297 kB)29 downloads
File information
File name FULLTEXT01.pdfFile size 1297 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Qu, ZhechaoSchmidt, Florian M.
By organisation
Department of Applied Physics and Electronics
In the same journal
Proceedings of the Combustion Institute
Chemical Process EngineeringAtom and Molecular Physics and OpticsEnergy SystemsBioenergyEnergy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 29 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 347 hits
ReferencesLink to record
Permanent link

Direct link