Change search
ReferencesLink to record
Permanent link

Direct link
Prediction of Dengue Outbreaks Based on Disease Surveillance and Meteorological Data
Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Epidemiology and Global Health. Center for Environmental Studies, Universitas Gadjah Mada, Yogyakarta, Indonesia.
Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Epidemiology and Global Health.
Umeå University, Faculty of Medicine, Department of Radiation Sciences.
Show others and affiliations
2016 (English)In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 11, no 3, e0152688Article in journal (Refereed) PublishedText
Abstract [en]

Research is needed to create early warnings of dengue outbreaks to inform stakeholders and control the disease. This analysis composes of a comparative set of prediction models including only meteorological variables; only lag variables of disease surveillance; as well as combinations of meteorological and lag disease surveillance variables. Generalized linear regression models were used to fit relationships between the predictor variables and the dengue surveillance data as outcome variable on the basis of data from 2001 to 2010. Data from 2011 to 2013 were used for external validation purposed of prediction accuracy of the model. Model fit were evaluated based on prediction performance in terms of detecting epidemics, and for number of predicted cases according to RMSE and SRMSE, as well as AIC. An optimal combination of meteorology and autoregressive lag terms of dengue counts in the past were identified best in predicting dengue incidence and the occurrence of dengue epidemics. Past data on disease surveillance, as predictor alone, visually gave reasonably accurate results for outbreak periods, but not for non-outbreaks periods. A combination of surveillance and meteorological data including lag patterns up to a few years in the past showed most predictive of dengue incidence and occurrence in Yogyakarta, Indonesia. The external validation showed poorer results than the internal validation, but still showed skill in detecting outbreaks up to two months ahead. Prior studies support the fact that past meteorology and surveillance data can be predictive of dengue. However, to a less extent has prior research shown how the longer-term past disease incidence data, up to years, can play a role in predicting outbreaks in the coming years, possibly indicating cross-immunity status of the population.

Place, publisher, year, edition, pages
2016. Vol. 11, no 3, e0152688
National Category
Public Health, Global Health, Social Medicine and Epidemiology
Identifiers
URN: urn:nbn:se:umu:diva-120643DOI: 10.1371/journal.pone.0152688ISI: 000373121800116PubMedID: 27031524OAI: oai:DiVA.org:umu-120643DiVA: diva2:953787
Available from: 2016-08-18 Created: 2016-05-18 Last updated: 2016-08-18Bibliographically approved

Open Access in DiVA

fulltext(1004 kB)16 downloads
File information
File name FULLTEXT01.pdfFile size 1004 kBChecksum SHA-512
a2711f8ad470b086cdae33d9a0a2d17bcd21b20236f2a2972c842749783a45604810cd058b52d893939af6bef7127de1a51e01d46aa0b367b4cc1961b4d34973
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Ramadona, Aditya LiaHii, Yien LingHolmner, ÅsaRocklöv, Joacim
By organisation
Epidemiology and Global HealthDepartment of Radiation Sciences
In the same journal
PLoS ONE
Public Health, Global Health, Social Medicine and Epidemiology

Search outside of DiVA

GoogleGoogle Scholar
Total: 16 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 13 hits
ReferencesLink to record
Permanent link

Direct link