Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Unscrambling Cyanobacteria Community Dynamics Related to Environmental Factors
(EcoChange)
Show others and affiliations
2016 (English)In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 7, 625Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Future climate scenarios in the Baltic Sea project an increase of cyanobacterial bloom frequency and duration, attributed to eutrophication and climate change. Some cyanobacteria can be toxic and their impact on ecosystem services is relevant for a sustainable sea. Yet, there is limited understanding of the mechanisms regulating cyanobacterial diversity and biogeography. Here we unravel successional patterns and changes in cyanobacterial community structure using a 2-year monthly time series during the productive season in a 100 km coastal-offshore transect using microscopy and high-throughput sequencing of 16S rRNA gene fragments. A total of 565 cyanobacterial OTUs were found, of which 231 where filamentous/colonial and 334 picocyanobacterial. Spatial differences in community structure between coastal and offshore waters were minor. An "epidemic population structure" (dominance of a single cluster) was found for Aphanizomenon/Dolichospermum within the filamentous/colonial cyanobacterial community. In summer, this cluster simultaneously occurred with opportunistic clusters/OTUs, e.g., Nodulana spumigena and Pseudanabaena. Picocyanobacteria, Synechococcus/Cyanobium, formed a consistent but highly diverse group. Overall, the potential drivers structuring summer cyanobacterial communities were temperature and salinity. However, the different responses to environmental factors among and within genera suggest high niche specificity for individual OTUs. The recruitment and occurrence of potentially toxic filamentous/colonial clusters was likely related to disturbance such as mixing events and short-term shifts in salinity, and not solely dependent on increasing temperature and nitrogen-limiting conditions. Nutrients did not explain further the changes in cyanobacterial community composition. Novel occurrence patterns were identified as a strong seasonal succession revealing a tight coupling between the emergence of opportunistic picocyanobacteria and the bloom of filamentous/colonial clusters. These findings highlight that if environmental conditions can partially explain the presence of opportunistic picocyanobacteria, microbial and trophic interactions with filamentous/colonial cyanobacteria should also be considered as potential shaping factors for single-celled communities. Regional climate change scenarios in the Baltic Sea predict environmental shifts leading to higher temperature and lower salinity; conditions identified here as favorable for opportunistic filamentous/colonial cyanobacteria. Altogether, the diversity and complexity of cyanobacterial communities reported here is far greater than previously known, emphasizing the importance of microbial interactions between filamentous and picocyanobacteria in the context of environmental disturbances.

Place, publisher, year, edition, pages
2016. Vol. 7, 625
Keyword [en]
cyanobacteria, community, environmental factors, climate change, temperature, salinity
National Category
Microbiology
Identifiers
URN: urn:nbn:se:umu:diva-121551DOI: 10.3389/fmicb.2016.00625ISI: 000375401300001OAI: oai:DiVA.org:umu-121551DiVA: diva2:945148
Available from: 2016-06-30 Created: 2016-06-03 Last updated: 2017-11-28Bibliographically approved

Open Access in DiVA

fulltext(3412 kB)119 downloads
File information
File name FULLTEXT01.pdfFile size 3412 kBChecksum SHA-512
e81377014f84c8eb0f9e040265e43c6e5ae7a2ad7b9a4e631f21baf843115555c5561077b8f5138755d6309650c90b1f000ea84ffe915227571e78ec205e25e2
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Andersson, Agneta
By organisation
Department of Ecology and Environmental Sciences
In the same journal
Frontiers in Microbiology
Microbiology

Search outside of DiVA

GoogleGoogle Scholar
Total: 119 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 118 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf