Change search
ReferencesLink to record
Permanent link

Direct link
Retrieval of Cloud Top Pressure
Linköping University, Department of Computer and Information Science. Linköping University, Faculty of Science & Engineering.
2016 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

In this thesis the predictive models the multilayer perceptron and random forest are evaluated to predict cloud top pressure. The dataset used in this thesis contains brightness temperatures, reflectances and other useful variables to determine the cloud top pressure from the Advanced Very High Resolution Radiometer (AVHRR) instrument on the two satellites NOAA-17 and NOAA-18 during the time period 2006-2009. The dataset also contains numerical weather prediction (NWP) variables calculated using mathematical models. In the dataset there are also observed cloud top pressure and cloud top height estimates from the more accurate instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The predicted cloud top pressure is converted into an interpolated cloud top height. The predicted pressure and interpolated height are then evaluated against the more accurate and observed cloud top pressure and cloud top height from the instrument on the satellite CALIPSO.

The predictive models have been performed on the data using different sampling strategies to take into account the performance of individual cloud classes prevalent in the data. The multilayer perceptron is performed using both the original response cloud top pressure and a log transformed repsonse to avoid negative values as output which is prevalent when using the original response. Results show that overall the random forest model performs better than the multilayer perceptron in terms of root mean squared error and mean absolute error.

Place, publisher, year, edition, pages
2016. , 77 p.
Keyword [en]
neural networks, multilayer perceptron, random forest regression, cloud top pressure, cloud top height
National Category
Computer and Information Science
URN: urn:nbn:se:liu:diva-129805ISRN: LIU-IDA/STAT-A--16/006—SEOAI: diva2:944014
External cooperation
Swedish Meteorological and Hydrological Institute (SMHI)
Subject / course
Available from: 2016-06-29 Created: 2016-06-28 Last updated: 2016-06-29Bibliographically approved

Open Access in DiVA

Retrieval of Cloud Top Pressure(639 kB)77 downloads
File information
File name FULLTEXT01.pdfFile size 639 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Department of Computer and Information ScienceFaculty of Science & Engineering
Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 77 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 238 hits
ReferencesLink to record
Permanent link

Direct link