Change search
ReferencesLink to record
Permanent link

Direct link
Eliminating the latency using different Kalman filters: for a virtual reality based teleoperation system
KTH, School of Computer Science and Communication (CSC).
2016 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Eliminera latensen med olika Kalman filter : för en virtuell verklighet baserad teleoperation systemet (Swedish)
Abstract [en]

Latency has always been one of the essential problems within Virtual Reality (VR) domain since VR is inherently an interactive paradigm which performs the real-time estimation of human motions. From the user's point of view, the latency extremely reduces the presence experience of VR systems, especially when user won’t able to perform interactions accurately. To compensate the excessive latency, different prediction methods on human motion were studied in recent years. Among them, Kalman Filter was the most popular choice. However, the effectiveness of using Kalman Filter to eliminate the latency for VR systems is not always satisfactory in practice since the accuracy of the estimation of the users’ motion depends on several factors: the linearity of the motion, the prediction time, the computational time, and the algorithm’s limitation.Therefore, this thesis presents a VR-based haptic teleoperation system to study how to effectively eliminate the latency effectively using Kalman Filter. For investigating the performances of different prediction methods for VR systems with several factors considered, two types of Kalman Filter: Linear Kalman Filter (LKF) and Unscented Kalman Filter (UKF) have been used to predict the haptic motion dataset, under different amount of simulated latencies.The result shows, both LKF and UKF provide a good performance at compensating the latency. For 200ms latency, both filters satisfactorily eliminate the latency and improve the interaction effectiveness. The comparative study shows, LKF provides better performance since the linear rotational motion dataset captured by haptic device was used; both filters show a reduced performance when the prediction time is increased. Besides, UKF requires more computational time than LKF.

Place, publisher, year, edition, pages
2016. , 33 p.
Keyword [en]
Kalman Filter Algorithm, Virtual Reality, Teleoperation, Haptic, Comparative study
National Category
Media and Communication Technology
URN: urn:nbn:se:kth:diva-189139OAI: diva2:943400
Available from: 2016-07-05 Created: 2016-06-27 Last updated: 2016-07-05Bibliographically approved

Open Access in DiVA

fulltext(1522 kB)48 downloads
File information
File name FULLTEXT01.pdfFile size 1522 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Media and Communication Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 48 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 268 hits
ReferencesLink to record
Permanent link

Direct link