Change search
ReferencesLink to record
Permanent link

Direct link
Exploring mobile device usage patterns by using the FANN neural network library
University of Skövde, School of Informatics.
2016 (English)Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Security awareness is becoming an increasingly valuable characteristic due to the increased digitization of society. The commonality of constantly connected devices, such as smartphones and tablets, along with the threat of malware and cyber-attacks has sparked an interest in creating a system with the purpose of training people in security awareness. This thesis aims to show the presence of patterns in mobile device usage, and explore the possibility of using pattern detection as a means to predict riskful actions on mobile devices as a step to evaluate the prediction approach for use in the training system.A survey has been conducted by gathering usage data from a number of participants through the use of a logging application. This data was then analyzed using artificial neural networks provided by the open source FANN library in search for patterns preluding certain events. The results lend support to the claim that patterns exist in the way mobile devices are used, but the usefulness of FANN as a tool for finding these patterns was shown to be questionable.

Place, publisher, year, edition, pages
2016. , 38 p.
Keyword [en]
event prediction, neural networks, machine learning, usage patterns, mobile usage
National Category
Computer Science
URN: urn:nbn:se:his:diva-12590OAI: diva2:942582
Subject / course
Educational program
Computer Science - Specialization in Systems Development
Available from: 2016-07-01 Created: 2016-06-25 Last updated: 2016-07-01Bibliographically approved

Open Access in DiVA

fulltext(1639 kB)18 downloads
File information
File name FULLTEXT01.pdfFile size 1639 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Németh Norrby, Otto
By organisation
School of Informatics
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 18 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 92 hits
ReferencesLink to record
Permanent link

Direct link