Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Credit Risk Management in Absence of Financial and Market Data
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematical Statistics.
2016 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Kreditriskhantering vid avsaknad av marknadsdata och finansiell data (Swedish)
Abstract [en]

Credit risk management is a significant fragment in financial institutions' security precautions against the downside of their investments. A major quandary within the subject of credit risk is the modeling of simultaneous defaults. Globalization causes economises to be affected by innumerous external factors and companies to become interdependent, which in turn enlarges the complexity of establishing reliable mathematical models. The precarious situation is exacerbated by the fact that managers often suffer from the lack of data. The default correlations are most often calibrated by either using financial and/or market information. However, there exists circumstances where these types of data are inaccessible or unreliable. The problem of scarce data also induces diculties in the estimation of default probabilities. The frequency of insolvencies and changes in credit ratings are usually updated on an annual basis and historical information covers 20-25 years at best. From a mathematical perspective, this is considered as a small sample and standard statistical models are inferior in such situations.

The first part of this thesis specifies the so-called entropy model which estimates the impact of macroeconomic fluctuations on the probability of defaults, and aims to outperform standard statistical models for small samples. The second part specifies the CIMDO, a framework for modeling correlated defaults without financial and market data. The last part submits a risk analysis framework for calculating the uncertainty in the simulated losses.

It is shown that the entropy model will reduce the variance of the regression coefficients but increase its bias compared to the OLS and Maximum Likelihood. Furthermore there is a significant difference between the Student's t CIMDO and the t-Copula. The former appear to reduce the model uncertainty, however not to such extent that evident conclusions were carried out.

Abstract [sv]

Kreditriskhantering är den enskilt viktigaste delen i banker och finansiella instituts säkerhetsåtgärder mot nedsidor i deras investeringar. En påtaglig svårighet inom ämnet är modelleringen av simultana konkurser. Globalisering ökar antalet parametrar som påverkar samhällsekonomin, vilket i sin tur försvårar etablering av tillförlitliga matematiska modeller. Den prekära situationen förvärras av det faktum att analytiker genomgående saknar tillräcklig data. Konkurskorrelation är allt som oftast kalibrerad med hjälp av information från årsrapporter eller marknaden. Dessvärre existerar det omständigheter där sådana typer av data är otillgängliga eller otillförlitliga. Samma problematik skapar även svårigheter i skattningen av sannolikheten till konkurs. Uppgifter såsom frekvensen av insolventa företag eller förändringar i kreditbetyg uppdateras i regel årligen, och historisk data täcker i bästa fall 20-25 år. Syftet med detta examensarbete är att ge ett övergripande ramverk för kreditriskhantering i avsaknad av finansiell information och marknadsdata. Detta innefattar att estimera vilken påverkan fluktueringar i makroekonomin har på sannolikheten för konkurs, modellera korrelerade konkurser samt sammanfatta ett ramverk för beräkning av osäkerheten i den estimerade förlustdistributionen.

Den första delen av examensarbetet specificerar den så kallade entropy modellen. Denna skattar påverkan av makroekonomin på sannolikheterna för konkurs och ämnar att överträffa statistiska standardmodeller vid små datamängder. Den andra delen specificerar CIMDO, ett ramverk för beräkning av konkurskorrelation när marknads- och företagsdata saknas. Den sista delen framlägger ett ramverk för riskanalys av förlustdistributionen.

Det visas att entropy modellen reducerar variansen i regressionskoefficienter men till kostnad av att försämra dess bias. Vidare är det en signifikant skillnad mellan student’s t CIMDO och t-Copula. Det förefaller som om den förstnämnda reducerar osäkerheten i beräkningarna, men inte till den grad att uppenbara slutsatser kan dras.

Place, publisher, year, edition, pages
2016.
Series
TRITA-MAT-E, 2016:33
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:kth:diva-188800OAI: oai:DiVA.org:kth-188800DiVA: diva2:939534
Subject / course
Mathematical Statistics
Educational program
Master of Science - Applied and Computational Mathematics
Supervisors
Examiners
Available from: 2016-06-20 Created: 2016-06-17 Last updated: 2016-09-07Bibliographically approved

Open Access in DiVA

fulltext(6681 kB)131 downloads
File information
File name FULLTEXT02.pdfFile size 6681 kBChecksum SHA-512
12a62f4130c2e6a570dee9fedcae682a7aa994d7788282a0de6fbbb41db9570e099a5b8a1dcfb427e004a92e805655857ab1431b640e1c7d7ac12620d6064859
Type fulltextMimetype application/pdf

By organisation
Mathematical Statistics
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 1163 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 297 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf