Change search
ReferencesLink to record
Permanent link

Direct link
Neural Networks for Part-of-Speech Tagging
Linköping University, Department of Computer and Information Science.
2016 (English)Independent thesis Basic level (degree of Bachelor), 12 credits / 18 HE creditsStudent thesis
Abstract [en]

The aim of this thesis is to explore the viability of artificial neural networks using a purely contextual word representation as a solution for part-of-speech tagging. Furthermore, the effects of deep learning and increased contextual information of the network are explored. This was achieved by creating an artificial neural network written in Python. The input vectors employed were created by Word2Vec. This system was compared to a baseline using a tagger with handcrafted features in respect to accuracy and precision. The results show that the use of artificial neural networks using a purely contextual word representation shows promise, but ultimately falls roughly two percent short of the baseline. The suspected reason for this is the suboptimal representation for rare words. The use of deeper network architectures shows an insignificant improvement, indicating that the data sets used might be too small. The use of additional context information provided a higher accuracy, but started to decline after a context size of one.

Place, publisher, year, edition, pages
2016. , 24 p.
Keyword [en]
artificial neural network, part-of-speech tagging, language technology
National Category
Language Technology (Computational Linguistics)
URN: urn:nbn:se:liu:diva-129296ISRN: LIU-IDA/KOGVET-G--16/002—SEOAI: diva2:937606
Subject / course
Cognitive science
Available from: 2016-06-16 Created: 2016-06-15 Last updated: 2016-06-16Bibliographically approved

Open Access in DiVA

fulltext(1088 kB)127 downloads
File information
File name FULLTEXT01.pdfFile size 1088 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Strandqvist, Wiktor
By organisation
Department of Computer and Information Science
Language Technology (Computational Linguistics)

Search outside of DiVA

GoogleGoogle Scholar
Total: 127 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 299 hits
ReferencesLink to record
Permanent link

Direct link