Change search
ReferencesLink to record
Permanent link

Direct link
Sequential Holonomic Quantum Gates: Open Path Holonomy in Λ-configuration
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
2016 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

In the Λ-system, non-adiabatic holonomic quantum phases are used to construct holonomic quantum gates. An interesting approach would be to implement open path holonomies in the Λ-system. By dividing the loop into two curve segments with a unitary transformation between them, universality can be reached. In doing so the exibility of the scheme has been increased by the fact that one single full pulse is now enough for universality, and we have achieved a clearer proof of the geometric property of the Λ system.

Abstract [sv]

I ett Λ-system så används icke-adiabatiska holonoma kvantfaser för att bygga holonoma kvantgrindar. I detta arbete undersöker vi om holonomier för öppna kurvor kan implementeras i Λsystemet. Genom att dela upp en loop i Λ-systemet i två sekvenser med en unitär transformation emellan så kan vi konstruera en universell holonom kvantgrind. Med detta så har vi ökat exibiliteten för systemet genom att vi nu bara behöver ta en loop för att nå universalitet, och vi har även erhållit en klarare bild över den geometriska egenskapen hos Λ-systemet.

Place, publisher, year, edition, pages
Keyword [en]
Quantum Gate, Holonomy, Geometric Phase
National Category
Other Physics Topics
URN: urn:nbn:se:uu:diva-296137OAI: diva2:936327
Educational program
Bachelor Programme in Physics
Available from: 2016-06-14 Created: 2016-06-13 Last updated: 2016-06-14Bibliographically approved

Open Access in DiVA

fulltext(2555 kB)34 downloads
File information
File name FULLTEXT01.pdfFile size 2555 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Materials Theory
Other Physics Topics

Search outside of DiVA

GoogleGoogle Scholar
Total: 34 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 259 hits
ReferencesLink to record
Permanent link

Direct link