Change search
ReferencesLink to record
Permanent link

Direct link
Highway Traffic State Estimation and Short-term Prediction
Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, Faculty of Science & Engineering.
2016 (English)Licentiate thesis, monograph (Other academic)
Abstract [en]

Traffic congestion is increasing in almost all large cities, leading to a number of negative effects such as pollution and delays. However, building new roads is not a feasible solution. Instead, the use of the existing road network has to be optimized, together with a shift towards more sustainable transport modes. In order to achieve this there are several challenges that needs to be addressed. One challenge is the ability to provide accurate information about the current and future traffic state. This information is an essential input to the traffic management center and can be used to influence the choices made by the travelers. Accurate information about the traffic state on highways, where the potential to manage and control the traffic in general is very high, would be of great significance for the traffic managers. It would help the traffic managers to take action before the system reaches congestion and limit the effects of it. At the same time, the collection of traffic data is slowly shifting from fixed sensors to more probe based data collection. This requires an adaptation and further development of the traditional traffic models in order for them to handle and take advantage of the characteristics of all types of data, not just data from the traditionally used fixed sensors.

The objective of this thesis is to contribute to the development and implementation of a model for estimation and prediction of the current and future traffic state and to facilitate an adaptation of the model to the conditions of the highway in Stockholm. The model used is a version of the Cell Transmission Model (CTM-v) where the velocity is used as the state variable. Thus, together with an Ensemble Kalman Filter (EnKF) it can be used to fuse different types of point speed measurements. The model is developed to run in real-time for a large network. Furthermore, a two-stage process used to calibrate the model is implemented. The results from the calibration and validation show that once the model is calibrated, the estimated travel times corresponds well with the ground truth travel times collected from Bluetooth sensors.

In order to produce accurate short-term predictions for various networks and conditions it is vital to combine different methods. We have implemented and evaluated a hybrid prediction approach that assimilates parametric and non-parametric short-term traffic state prediction. To predict mainline sensor data we use a neural network, while the CTM-v is ran forward in time in order to predict future traffic states. The results show that both the hybrid approach and the CTM-v prediction without the additional predicted mainline sensor data is superior to a naïve prediction method for longer prediction horizons.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2016. , 110 p.
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1749
National Category
Transport Systems and Logistics Control Engineering Computer Engineering Computer Science Communication Studies
URN: urn:nbn:se:liu:diva-128617DOI: 10.3384/lic.diva-128617ISBN: 978-91-7685-757-1 (Print)OAI: diva2:930779
2016-05-26, K3, Kåkenhus, Campus Norrköping, Linköpings universitet, Norrköping, 13:15 (Swedish)
Available from: 2016-05-25 Created: 2016-05-25 Last updated: 2016-06-21Bibliographically approved

Open Access in DiVA

fulltext(4052 kB)34 downloads
File information
File name FULLTEXT01.pdfFile size 4052 kBChecksum SHA-512
Type fulltextMimetype application/pdf
omslag(22 kB)17 downloads
File information
File name COVER01.pdfFile size 22 kBChecksum SHA-512
Type coverMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Allström, Andreas
By organisation
Communications and Transport SystemsFaculty of Science & Engineering
Transport Systems and LogisticsControl EngineeringComputer EngineeringComputer ScienceCommunication Studies

Search outside of DiVA

GoogleGoogle Scholar
Total: 34 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 815 hits
ReferencesLink to record
Permanent link

Direct link