Change search
ReferencesLink to record
Permanent link

Direct link
Developing crash models with supporting vector machine for urban transportation planning
University of Louisiana.
Texas A&M Transportation Institute.
Neel-Schaffer, Inc..
2016 (English)Conference paper (Refereed)
Abstract [en]

Effectively incorporating roadway safety into transportation planning requires robust safety models that can quantitatively predict the safety performance of future planned roadway development options. Although various safety models have been developed including the models introduced in the first edition of Highway Safety Manual (HSM) by American Association of State Highway Transportation Officials (AASHTO), these models try to link roadway design features, such as lane with, should width, horizontal curve and vertical grade design with crash occurrences at disaggregated level and require the detailed inputting data and complex application procedures. Transportation planning mainly deals with type and functionality of roadway or roadway network. The HSM crash prediction modes for urban and suburban roadway are complex involving several sub-models for different types of collisions, which makes it hard for transportation planning applications.

This paper introduces an innovative crash prediction model with so-called Support Vector Machines (SVM). Being a branch of machine learning, SVM focuses on the recognition of patterns and regularities in data. The dramatic growth in practical applications for machine learning over the last ten years has been made possible by many important developments in the underlying algorithms, techniques and readily available open-source programming code. Motivated by lack of suitable safety models for transportation planning, this study used the SVM with crash data from Louisiana urban roadways to develop safety models for urban 2-lane roadway, multi-lane roadway and freeways with satisfactory results. Comparing with parametric statistical regression models, the SVM model produces results can not only reach the same level of accuracy but also be straightforward for practical applications in urban transportation planning.

Place, publisher, year, edition, pages
Linköping: Statens väg- och transportforskningsinstitut, 2016.
National Category
Transport Systems and Logistics
Research subject
URN: urn:nbn:se:vti:diva-10572OAI: diva2:926110
17th International Conference Road Safety On Five Continents (RS5C 2016), Rio de Janeiro, Brazil, 17-19 May 2016.
Available from: 2016-05-04 Created: 2016-05-04 Last updated: 2016-05-04Bibliographically approved

Open Access in DiVA

fulltext(940 kB)51 downloads
File information
File name FULLTEXT01.pdfFile size 940 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Transport Systems and Logistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 51 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 68 hits
ReferencesLink to record
Permanent link

Direct link