Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Theoretical and experimental study of metastable solid solutions and phase stability within the immiscible Ag-Mo binary system
Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-2864-9509
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-4898-5115
Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-4811-478X
Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-0099-5469
Show others and affiliations
2016 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 119, no 9, 095303- p.Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Metastable solid solutions are phases that are synthesized far from thermodynamic equilibrium and offer a versatile route to design materials with tailor-made functionalities. One of the most investigated classes of metastable solid solutions with widespread technological implications is vapor deposited ternary transition metal ceramic thin films (i.e., nitrides, carbides, and borides). The vapor-based synthesis of these ceramic phases involves complex and difficult to control chemical interactions of the vapor species with the growing film surface, which often makes the fundamental understanding of the composition-properties relations a challenging task. Hence, in the present study, we investigate the phase stability within an immiscible binary thin film system that offers a simpler synthesis chemistry, i.e., the Ag-Mo system. We employ magnetron co-sputtering to grow Ag1-xMox thin films over the entire composition range along with x-ray probes to investigate the films structure and bonding properties. Concurrently, we use density functional theory calculations to predict phase stability and determine the effect of chemical composition on the lattice volume and the electronic properties of Ag-Mo solid solutions. Our combined theoretical and experimental data show that Mo-rich films (x >= similar to 0.54) form bcc Mo-Ag metastable solid solutions. Furthermore, for Ag-rich compositions (x <= similar to 0.21), our data can be interpreted as Mo not being dissolved in the Ag fcc lattice. All in all, our data show an asymmetry with regards to the mutual solubility of Ag and Mo in the two crystal structures, i.e., Ag has a larger propensity for dissolving in the bcc-Mo lattice as compared to Mo in the fcc-Ag lattice. We explain these findings in light of isostructural short-range clustering that induces energy difference between the two (fcc and bcc) metastable phases. We also suggest that the phase stability can be explained by the larger atomic mobility of Ag atoms as compared to that of Mo. The mechanisms suggested herein may be of relevance for explaining phase stability data in a number of metastable alloys, such as ternary transition metal-aluminum-nitride systems. (C) 2016 AIP Publishing LLC.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2016. Vol. 119, no 9, 095303- p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:liu:diva-127275DOI: 10.1063/1.4942840ISI: 000372351900057OAI: oai:DiVA.org:liu-127275DiVA: diva2:921596
Note

Funding Agencies|Linkoping University [Dnr-LiU-2015-01510]; Swedish Research Council (VR) [621-2011-4417, 330-2014-6336]; VINN Excellence Center Functional Nanoscale Materials (FunMat); Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009-00971]

Available from: 2016-04-20 Created: 2016-04-19 Last updated: 2017-11-30Bibliographically approved

Open Access in DiVA

fulltext(589 kB)81 downloads
File information
File name FULLTEXT01.pdfFile size 589 kBChecksum SHA-512
c2b5f84cb3e5b51cd3313caeed3d9c2e5f962a6ffbf5b9d0ec06f36f67ee9b3269ce3a2342eb32857344f426f103de0e1f6a11843ed6a921ae0f3adfc4dc18c9
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Sarakinos, KostasGreczynski, GrzegorzElofsson, ViktorMagnfält, DanielHögberg, HansAlling, Björn

Search in DiVA

By author/editor
Sarakinos, KostasGreczynski, GrzegorzElofsson, ViktorMagnfält, DanielHögberg, HansAlling, Björn
By organisation
Nanoscale engineeringFaculty of Science & EngineeringThin Film PhysicsDepartment of Physics, Chemistry and Biology
In the same journal
Journal of Applied Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 81 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 306 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf