Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modelling Low Dimensional Neural Activity
KTH, School of Computer Science and Communication (CSC), Computational Science and Technology (CST). KTH, School of Computer Science and Communication (CSC), Computational Biology, CB.
2016 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Modellering av lågdimensionell neural aktivitet (Swedish)
Abstract [en]

A number of recent studies have shown that the dimensionality of the neural activity in the cortex is low. However, what network structures are capable of producing such activity is not theoretically well understood. In this thesis, I discuss a few possible solutions to this problem, and demonstrate that a network with a multidimensional attractor can give rise to such low dimensional activity. The network is created using the Neural Engineering Framework, and exhibits several biologically plausible features, including a log-normal distribution of the synaptic weights.

Abstract [sv]

Ett antal nyligen publicerade studier has visat att dimensionaliten för neural aktivitet är låg. Dock är det inte klarlagt vilka nätverksstrukturer som kan uppbringa denna typ av aktivitet. I denna uppsats diskuterar jag möjliga lösningsförslag, och demonstrerar att ett nätverk med en flerdimensionell attraktor ger upphov till lågdimensionell aktivitet. Nätverket skapas med hjälp av the Neural Engineering Framework, och uppvisar ett flertal biologiskt trovärdiga egenskaper. I synnerhet är fördelningen av synapsvikter log-normalt fördelad.

Place, publisher, year, edition, pages
2016. , 41 p.
Keyword [en]
neural networks, low dimensional, neural, activity, neural engineering framework, NEF, nef, artificial neural network, ann, dimensionality, log-normal, log, normal, distribution, synaptic, geometric, connectivity
National Category
Bioinformatics (Computational Biology)
Identifiers
URN: urn:nbn:se:kth:diva-185317OAI: oai:DiVA.org:kth-185317DiVA: diva2:920068
Subject / course
Computer Science
Educational program
Master of Science in Engineering -Engineering Physics
Presentation
2016-04-07, F0, Lindstedtsvägen 24, Stockholm, 15:15 (English)
Supervisors
Examiners
Available from: 2016-04-19 Created: 2016-04-15 Last updated: 2016-04-19Bibliographically approved

Open Access in DiVA

master_thesis_emil_warnberg(1030 kB)187 downloads
File information
File name FULLTEXT01.pdfFile size 1030 kBChecksum SHA-512
266fa69ecf1367a14647d82a132f6f7bb455ab983d08cae7557be5f5f9f0b6a95fb4f01fedf11684e445dcb654ca77c5e62c762ccee93926a112b4127e70e418
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Wärnberg, Emil
By organisation
Computational Science and Technology (CST)Computational Biology, CB
Bioinformatics (Computational Biology)

Search outside of DiVA

GoogleGoogle Scholar
Total: 187 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 732 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf